Synopsis

Tuning in to gravity

Physics 4, s54
Tests of an early design for a gravity-wave detector determine sensitivity limits in a new frequency window.
Credit: M. Ando et al., Phys. Rev. Lett. 105, 161101 (2010)

Depending on their source, gravity waves—never-detected ripples in spacetime that result from massive accelerating bodies—could appear at almost any frequency. Each gravity-wave detector is designed to be sensitive over a different stretch of the spectrum. Now, writing in Physical Review Letters, a team of scientists in Japan describes early tests of a detector that is sensitive over a frequency range not currently completely captured by others.

Last year, Masaki Ando, at Kyoto University, and colleagues proposed building a detector that senses gravity waves by tracking the relative angle between two suspended bar-masses. This torsion-bar antenna, or “TOBA,” would be sensitive to gravity waves between 1mHz and 1Hz, a frequency range below that of the ground-based detector LIGO, but above that of the proposed space-based interferometer LISA.

In a first test of their detector’s sensitivity, the same group has designed a mini-version consisting of an upside-down T-shaped bar (about 22cm across). A magnet on one end of the bar allows the team to suspend the mass, free of contact, from a superconducting pivot, while a laser interferometry setup tracks the deflections in the bar.

The miniature TOBA provides an early estimate of the detector’s sensitivity, but the team expects three more stages of design before they scale up to a final version with 10- m-wide bars. – Jessica Thomas


Subject Areas

AstrophysicsGravitation

Related Articles

Eating Without Limit: Ravenous Object May Explain Early Black Hole Growth
Astrophysics

Eating Without Limit: Ravenous Object May Explain Early Black Hole Growth

A black hole accreting mass above the so-called Eddington limit may explain how supermassive black holes reach billions of times the mass of our Sun. Read More »

Seeking Supernovae in Seafloor Sediments
Astrophysics

Seeking Supernovae in Seafloor Sediments

Minerals exposed during an ancient Mediterranean Sea desiccation should reveal damage caused by muons, providing evidence of enhanced cosmic-ray fluxes. Read More »

Gravitational Versions of Quantum Experiments
Quantum Physics

Gravitational Versions of Quantum Experiments

Measuring gravitational analogues of quantum phenomena could lead to high-precision measurement of gravitational forces, according to a theoretical proposal. Read More »

More Articles