Synopsis

Tantalizing cosmic-ray electrons

Physics 4, s72
A report from the PAMELA satellite says the electron flux in cosmic rays is consistent with the existence of new sources, such as dark matter particles or other astrophysical phenomena, but the results are still inconclusive.
Credit: Courtesy PAMELA space mission

In 2009, the satellite-borne instrument PAMELA reported that high-energy cosmic rays contained an unexpectedly large ratio of positrons to electrons. The excess flux of positrons suggested that perhaps the propagation of cosmic rays through space was different than had been assumed, or models needed to account for additional astrophysical sources, such as supernova remnants or dark matter particles—the latter being a particularly exciting possibility.

If additional sources are indeed at play, they should contribute roughly equally to positrons and to electrons, but in comparison to the larger electron flux, the contribution from extra sources would be more difficult to see than with positrons.

Now a new report from the PAMELA Collaboration appearing in Physical Review Letters contributes data on the absolute spectrum of electrons, for the first time at energies above 50GeV. Although the new data can be fit reasonably well with a standard-model calculation of cosmic-ray propagation, a somewhat better fit can be obtained by including additional sources of electrons in the calculation. (These same additional sources provide a good fit to the excess positron fraction that PAMELA observed earlier.) The data are also consistent (within errors) with results from the Fermi Large Area Telescope, which measured the combined contribution from positrons and electrons and provided some support for the new sources hypothesis.

Although the new PAMELA results support the earlier tantalizing indications of additional sources of cosmic rays, the field is not yet at the point of confirming their existence or nature. – Stanley Brown


Subject Areas

Astrophysics

Related Articles

Massive Star Formation Displays Self-Control
Astrophysics

Massive Star Formation Displays Self-Control

New observations of a stellar nursery highlight a self-regulation mechanism that appears to resolve discrepancies between simulated and observed efficiencies of star formation. Read More »

No-Show for Cosmic-Ray-Boosted, Lightweight Dark Matter
Astrophysics

No-Show for Cosmic-Ray-Boosted, Lightweight Dark Matter

Interactions with cosmic rays could make low-mass dark matter particles detectable by neutrino observatories. But an analysis of two decades’ worth of data shows no signs of the particles. Read More »

Detecting Dark Matter Decay
Particles and Fields

Detecting Dark Matter Decay

The first measurements from a newly built gamma-ray observatory have been analyzed for signs of the decay of heavy dark matter, putting a lower limit on the hypothetical particles’ lifetime. Read More »

More Articles