Synopsis

Tantalizing cosmic-ray electrons

Physics 4, s72
A report from the PAMELA satellite says the electron flux in cosmic rays is consistent with the existence of new sources, such as dark matter particles or other astrophysical phenomena, but the results are still inconclusive.
Credit: Courtesy PAMELA space mission

In 2009, the satellite-borne instrument PAMELA reported that high-energy cosmic rays contained an unexpectedly large ratio of positrons to electrons. The excess flux of positrons suggested that perhaps the propagation of cosmic rays through space was different than had been assumed, or models needed to account for additional astrophysical sources, such as supernova remnants or dark matter particles—the latter being a particularly exciting possibility.

If additional sources are indeed at play, they should contribute roughly equally to positrons and to electrons, but in comparison to the larger electron flux, the contribution from extra sources would be more difficult to see than with positrons.

Now a new report from the PAMELA Collaboration appearing in Physical Review Letters contributes data on the absolute spectrum of electrons, for the first time at energies above 50GeV. Although the new data can be fit reasonably well with a standard-model calculation of cosmic-ray propagation, a somewhat better fit can be obtained by including additional sources of electrons in the calculation. (These same additional sources provide a good fit to the excess positron fraction that PAMELA observed earlier.) The data are also consistent (within errors) with results from the Fermi Large Area Telescope, which measured the combined contribution from positrons and electrons and provided some support for the new sources hypothesis.

Although the new PAMELA results support the earlier tantalizing indications of additional sources of cosmic rays, the field is not yet at the point of confirming their existence or nature. – Stanley Brown


Subject Areas

Astrophysics

Related Articles

An Extraordinary Cosmic Alignment
Astrophysics

An Extraordinary Cosmic Alignment

A rare configuration of seven galaxies aligned behind a galaxy cluster allows researchers to probe with high precision the dark matter distribution within the cluster. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

A Time Standard for the Moon—Thanks to General Relativity
Astrophysics

A Time Standard for the Moon—Thanks to General Relativity

As part of an effort to establish a lunar time standard, researchers have used relativity to calculate time differences between Earth and the Moon. Read More »

More Articles