Synopsis

An old transition in a new light

Physics 4, s8
New results predict that a well-known phase transition in two dimensions should also be observable optically.
Credit: E. Small et al., Phys. Rev. A (2011)

In two-dimensional systems with continuous symmetry, thermal fluctuations prevent the emergence of long-range order. Nevertheless, there is a well-known transition, first predicted by Berezinskii, Kosterlitz, and Thouless (BKT), to a topologically ordered state with a correlation function that diverges as a power law. This transition was first studied in superfluid helium films on surfaces, and more recently in two-dimensional gases of cold atoms. Now, writing in Physical Review A, Eran Small and colleages of the Weizmann Institute of Science, Rehovot, Israel, show theoretically that the BKT transition should also be observable in the propagation of light in two-dimensional arrays of nonlinear optical waveguides.

The advantages of optical implementation are in its relative simplicity and that it does not rely on low-temperature experiments. Since the nonlinear Schrödinger equation describing propagation in a discrete two-dimensional set of waveguides is nonintegrable, the resulting motion in phase space is ergodic. An effective temperature can thus be defined and controlled by changing the input phase structure of the light injected into the array, opening the possibility of experimental verification. Beyond studying the BKT transition, this insight may facilitate studies of other interesting phase transitions using all-optical techniques. – Mark Saffman


Subject Areas

Atomic and Molecular PhysicsOptics

Related Articles

Birefringent Nanocubes Give Light a Circular Boost
Optics

Birefringent Nanocubes Give Light a Circular Boost

An achiral metasurface selectively transmits two beams of opposite chirality. Read More »

Gauging the Temperature Sensitivity of a Nuclear Clock
Atomic and Molecular Physics

Gauging the Temperature Sensitivity of a Nuclear Clock

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards. Read More »

The Effectiveness of Carbon-Ion Cancer Therapy
Biological Physics

The Effectiveness of Carbon-Ion Cancer Therapy

Experiments have shown that heavy-ion irradiation of biomolecules in aqueous environments efficiently triggers DNA-destroying cascades. Read More »

More Articles