A Trapped Nanoparticle Listens In

    Jeong Young Park
    • Graduate School of EEWS (WCU) and NanoCentury KI, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
    Dong Ki Yoon
    • Graduate School of Nano Science and Technology (WCU) and NanoCentury KI, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
Physics 5, 1
By tracking the tiny displacements of a nanoparticle trapped in an optical tweezer, scientists are able to detect the faintest of acoustic waves.
A. Ohlinger et al., Phys. Rev. Lett. (2012)
Figure 1: An optically trapped nanoparticle can act as an ultrasensitive detector of sound. Pressure waves from a nearby sound source are detected by tracking the small displacements of a trapped gold nanoparticle from its equilibrium position in the neck of a focused laser beam (red region). The sound waves are produced by an aggregate of nanoparticles that vibrate when heated by a laser (green region).

In the mid 1980s, scientists at Bell Labs showed that the radiation pressure from a tightly focused beam of light was capable of holding microscopic particles stable in a trap [1]. Since then, the technique of using these “optical tweezers” has been instrumental in condensed matter and physical chemistry experiments, and an important diagnostic tool for fundamental and applied research [2,3]. Optical traps can manipulate dielectric objects ranging in size from nanometers to micrometers. With the introduction of so-called holographic optical tweezing methodologies, it is now possible to control trapped particles in three dimensions [4,5]. The technique is particularly useful for manipulating biological objects, because the optical field is nondestructive.

Most applications of optical trapping study the trapped particle in equilibrium—the particle is held at the trap minimum. But as the technique reaches new levels of precision, researchers are interested in seeing if an optically trapped particle could be used to measure nonequilibrium fluctuations in the particle’s environment. In a paper appearing in Physical Review Letters, Alexander Ohlinger and co-workers at Ludwig Maximilian University of Munich in Germany demonstrate an experiment where these fluctuations can be detected. They have constructed an optical trap that acts as a highly sensitive “ear,” capable of tracking the minute changes in position of an optically trapped gold nanoparticle as it is displaced from equilibrium by pressure waves from a nearby sound source [6].

The basis of an optical trap is a focused laser beam, which creates a strong electric field gradient that can grab and control various objects, including nanoparticles [7–9]. Radiation pressure provides an attractive or repulsive force on a particle, depending on the refractive index mismatch between the particle and the surrounding medium, which is often water or a solvent. The field gradient creates a three-dimensional potential well that limits the particle’s motion to roughly the focal volume of the focused laser beam. Scientists first showed they could trap particles a few tens of nanometers ( nm) in size in all three dimensions in the early 1990s [7]; more recently a group at the University of Copenhagen used similar techniques to manipulate particles ranging in size from less than 20nm to a few hundred nanometers [8]. The same group showed that for nanoparticles with diameters less than 100nm, the trap stiffness (a parameter similar to the stiffness of a spring) is proportional to the volume of the particle [9]. In principle, the parameters describing the trapping potential well in optical tweezers, such as the position power spectra and strength of the trap, can be deduced, which offers a fairly simple approach to calibrate optical tweezers.

In optical traps where the laser used to trap the particle exceeds the particle’s dimensions, the particle acts like an electric dipole in the electric field. Thus acoustic vibrations can mechanically perturb dielectric particles and voltage changes can be measured by detecting the gold nanoparticle’s tiny displacement, which is typically around 100nm—roughly equivalent to a 90 micro-electron-volt increase in the nanoparticle’s kinetic energy. Ohlinger et al.’s setup consists of two sound sources embedded in a water-based medium and an “ear”—a 60nm gold nanoparticle trapped in a 808nm laser beam. One sound source is a tungsten needle glued on a loudspeaker and immersed into a water drop. A second, more microscopic sound source is provided by an aggregate of gold nanoparticles printed on a glass substrate (Fig. 1). Ohlinger et al. use a laser to excite plasmons on the surface of these nanoparticles, which in turn heats the particles and causes them to generate acoustic waves (photoacoustic effect) at a frequency of 20 hertz ( Hz).

Turning on either sound source causes the distribution of the trapped particle’s position to spread out along the same direction as the propagating sound wave—evidence that oscillating water near the nanoparticle is exerting a driving force in addition to the trapping potential. To test the ultimate sensitivity of their device, Ohlinger et al. analyze the frequency dependence of the nanoparticle’s position at the same 20Hz frequency as the thermally generated sound waves emitted from the nanoparticle aggregate. When this sound source is switched on, a clearly recognizable single peak at the frequency of the sound source appears superimposed on the spectrum of Brownian motion. Ohlinger et al. estimate that their nanoacoustic device can detect vibrations at a power level as low as -60 decibels (i.e., 6 orders of magnitude more sensitive than the threshold for human hearing).

The concept introduced by Ohlinger et al. may open new ways for obtaining useful information on micro objects that produce acoustic vibrations. Furthermore, a new type of acoustic microscopy with an optical readout of nonequilibrium fluctuations of the particle’s environment could be built based on a set of nanoears distributed in a sample that “listens” to acoustic signals and collects amplitudes, phases, and propagation directions of acoustic waves to get an insight into the sources. Furthermore, their study suggests that optical tweezers may provide a novel way to sense energy dissipation (in the form of vibrations) or surface plasmons [10].


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986)
  2. C. Lapointe, T. Mason, and I. I. Smalyukh, Science 326, 1083 (2009)
  3. K. Schutze, H. Pösl, and G. Lahr, Cell. Mol. Biol. 44, 735 (1998)
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77
  5. D. G. Grier, Nature 424, 810 (2003)
  6. A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, Phys. Rev. Lett. 108, 018101 (2012)
  7. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994)
  8. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. B. Oddershede, Nano Lett. 5, 1937 (2005)
  9. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008)
  10. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011)

About the Authors

Image of Jeong Young Park

Jeong Young Park is currently an associate professor in the EEWS (Energy, Environment, Water and Sustainability) Graduate School at KAIST, South Korea. He received his B.S. and Ph.D. from the Department of Physics, Seoul National University, in 1993 and 1999, respectively. After spending three years at the University of Maryland as a postdoctoral associate, he joined Lawrence Berkeley National Laboratory (LBNL) in 2002, where he worked as a physicist postdoctoral fellow and then a staff scientist since 2006. His research focuses on surface science and catalysis with special emphasis on energy dissipation and conversion at surfaces.

Image of Dong Ki Yoon

Dong Ki Yoon is a full professor in the Department of Chemistry at the Korea Advanced Institute of Science and Technology, South Korea. He currently leads the Soft Material Assembly Group. The main topic of the group is patterning and display applications based on orientation-controlled soft materials such as liquid crystals, supramolecules, biomaterials, and polymers. For this, his group uses external stimuli, including electric fields, confined geometries, and mechanical shear forces.

Read PDF

Subject Areas


Related Articles

Giant Clams Are Models of Solar-Energy Efficiency

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

Spider-Inspired Microphone Detects Tiny Gusts of Sound

Spider-Inspired Microphone Detects Tiny Gusts of Sound

A small device senses sounds using a spiderweb-like design—a strategy that could lead to chip-size microphones that are less affected by thermal noise. Read More »

Stiffening a Spring Made of Light

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles