Synopsis

One Photon Good, Two Better

Physics 5, s13
Quantum interference of pairs of photons emitted by nitrogen-vacancy centers in diamond paves the way for entanglement of distant qubits.
H. Bernien et al., Phys. Rev. Lett. (2012)

Although several powerful quantum algorithms have been put forth for quantum computing, implementing them in a physical device requires suitable qubits, protection from decoherence, and ways to read inputs and write outputs. Nitrogen-vacancy centers (NV) in diamond, which are nitrogen atoms coupled to a lattice vacancy, have pushed to the front of the queue of candidate qubits owing to their easily controllable spin states and stable optical properties. The trick now is to find a way to entangle and manipulate pairs of distant qubits for quantum computations. Hannes Bernien of Delft University of Technology, Netherlands, and colleagues now report in Physical Review Letters their progress on this front in the form of two-photon quantum interference of spatially separated diamond NV centers.

Such NV centers have been experimentally well characterized and researchers have entangled NV spins with photons, but the new work by Bernien et al. takes the next step. If two indistinguishable photons, each entangled with a distant NV center, can exhibit quantum interference then this can be exploited to obtain entanglement of the NV centers themselves. The authors have demonstrated exactly this kind of two-photon quantum interference by carefully isolating the optical transitions of separate NV centers and tuning them into resonance with applied electric fields. Moreover, the authors carried out simulations of the experiment with no free parameters that agree well with the interference data. Their work now sets the stage for controllable entanglement of pairs of NV centers in a bulk material and the possibility of building quantum networks of qubits for information processing. – David Voss


Subject Areas

Quantum InformationMaterials ScienceOpticsQuantum Physics

Related Articles

Connecting Qubits with a Topological Waveguide
Photonics

Connecting Qubits with a Topological Waveguide

A metamaterial waveguide with embedded qubits offers a new platform for probing and controlling topological phenomena. Read More »

Quantum Drones Take Flight
Quantum Information

Quantum Drones Take Flight

A small prototype of a drone-based quantum network has successfully relayed a quantum signal over a kilometer of free space. Read More »

Common Ground in Avalanche-Like Events
Materials Science

Common Ground in Avalanche-Like Events

Physicists have spent decades uncovering similarities in how disordered materials deform. Now they are trying to apply these results to the design of new materials. Read More »

More Articles