Synopsis

More tau leptons than expected

Physics 5, s135
An excess of tau leptons in bottom meson decays signals a puzzling departure from the standard model.
SLAC National Accelerator Laboratory

As reported in Physical Review Letters, the BaBar collaboration at SLAC has analyzed a large data set and found an excess of events containing tau leptons in the decay of bottom mesons that doesn’t agree with the predictions of the standard model of particle physics.

BaBar looked for the decays of bottom mesons (a bound state of a bottom quark and a light quark) into a charm meson, a charged lepton, and a neutrino. Compared to a previous analysis, they were able to increase the efficiency with which they identified signal events by more than a factor of 3. BaBar determined the ratio of those decays that contained tau leptons to those that contained light charged leptons (electrons or muons), obtaining a larger ratio than predicted by the standard model by 3.4 standard deviations.

This deviation could be due to some new particle, such as a charged Higgs boson, which couples more strongly to heavy particles like taus than to electrons or muons (though BaBar shows that one of the most commonly studied models with a charged Higgs boson does not work). Systematic errors or statistical fluctuations could also give rise to the apparent excess of tau leptons. Finally, it could be that the standard model theoretical prediction BaBar compares their data to will change. In a recent paper (Jon A. Bailey et al., Phys. Rev. Lett. 109 071802 (2012)) researchers recalculated one of the theoretical inputs into that prediction, and their results reduce the discrepancy BaBar finds to 3.2 standard deviations. – Robert Garisto


Subject Areas

Particles and Fields

Related Articles

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

More Articles