Synopsis

Tuning Casimir Forces

Physics 5, s185
Quantum Hall effects can be exploited to tune, reverse, and even eliminate the Casimir force between two graphene sheets.

When two uncharged metallic mirrors are placed sufficiently close in a vacuum, fluctuations in the quantum vacuum field create an attractive force between them, known as the Casimir force. But if the mirrors are made of graphene, instead of a metal, something different can happen in the presence of a magnetic field. Writing in Physical Review Letters, Wang-Kong Tse and Allan MacDonald at the University of Texas at Austin investigate a possible method for controlling and even eliminating the Casimir force in this manner.

The scheme exploits the emergence of discrete Landau energy levels in graphene, arising from the quantum Hall effect induced by a strong magnetic field. The Casimir effect thus becomes dependent on the Hall conductivity, which in turn leads to the quantization of the Casimir force and allows tuning it electrically between repulsive and attractive values. The authors’ calculations show that the Casimir force can be strongly suppressed when one of the mirrors is charge neutral. The predicted effect should also hold for a sphere-and-plate mirror combination, an important geometry for studying Casimir effects due to the difficulty of keeping two planes perfectly parallel to each other.

A key motivation for suppressing the Casimir force is provided by the efforts to examine gravitational attraction at short distances (a few micrometers), over which theories have predicted non-Newtonian behavior. At these distances, the Casimir force exceeds gravitational attraction by far. The authors’ scheme would solve this problem and allow more sensitive and direct measurements of gravitational attraction. – Daniel Ucko


Subject Areas

GrapheneQuantum Physics

Related Articles

Quantum Circuit Tackles “Diabolical” Photochemical Process
Chemical Physics

Quantum Circuit Tackles “Diabolical” Photochemical Process

A quantum device shows promise for simulating molecular dynamics in a difficult-to-model photochemical process that is relevant to vision. Read More »

Twinkling of a Shrinking Droplet Reveals Hidden Complexity
Atomic and Molecular Physics

Twinkling of a Shrinking Droplet Reveals Hidden Complexity

Captivating patterns found in the light scattered by an evaporating water droplet could be used to infer the properties of the droplet as it shrinks. Read More »

A Nonlinear Cavity Cools a Cantilever
Quantum Physics

A Nonlinear Cavity Cools a Cantilever

Photons in a nonlinear cavity perform “negative” work on a mechanical oscillator, cooling it toward its ground state. Read More »

More Articles