Synopsis

Lévy Flight of the Bumblebee

Physics 5, s31
Bumblebee flight patterns reveal how the presence of spiders causes bees to modify their foraging strategies.

Bumblebees visit flowers to collect nectar, often visiting multiple flowers in a single patch. Mathematically, a bee’s path has been described by a Lévy flight, which gives flights over long distances a larger weight than in an ordinary random walk model. This description is controversial, however, as bumblebees in the wild are under the constant risk of predators, such as spiders, which likely modifies their foraging behavior.

Writing in Physical Review Letters, Friedrich Lenz at Queen Mary, University of London, UK, and colleagues present a statistical analysis of the velocity distribution of bumblebees. They draw from experiments that track real bumblebees visiting replenishing nectar sources under threat from “artificial spiders,” which can be simulated with a trapping mechanism that holds the bumblebee for two seconds. The team finds that in the absence of spiders, the bumblebees forage more systematically and go directly from flower to flower. When predators are present, however, the bumblebees turn around more often, highlighting a more careful approach to avoid spiders. The analysis indicates that for real foraging, factors such as bumblebee sensory perception, memory, and daylight cycles must also be taken into account in addition to the presence of predators, all of which may cause cause deviation from a Lévy flight pattern. – Daniel Ucko


Subject Areas

Nonlinear DynamicsBiological PhysicsStatistical Physics

Related Articles

Placing a Full Protein Library Under Pressure
Biological Physics

Placing a Full Protein Library Under Pressure

A new technique allows researchers to study how a bacterium’s entire set of proteins changes its shape under high pressures—shedding light on adaptation mechanisms of deep-sea organisms. Read More »

Treating Epidemics as Feedback Loops
Biological Physics

Treating Epidemics as Feedback Loops

A new model of epidemics describes infections as part of a feedback loop—an approach that might one day help optimize interventions such as social distancing and lockdowns. Read More »

How a Zebra’s Stripes Align
Biological Physics

How a Zebra’s Stripes Align

Local curvature could drive directionality of periodic pigmentation patterns on animals. Read More »

More Articles