Synopsis

Watch Those Cavities

Physics 5, s34
Radar data confirm that an important mechanism for turbulence in Earth’s auroral plasma can occur naturally.
Joshua Strang via Wikimedia Commons

Earth’s aurora is a complex and beautiful display of space plasma physics, but one still in need of a full explanation of mechanisms that cause it. This shimmering light show arises as charged particles from the solar wind are channeled by the terrestrial magnetic field and hit oxygen and nitrogen atoms high in the atmosphere at the poles. As the energetic ions and electrons slam into the magnetic fields and the atmosphere, a rich soup of particle-wave interactions boils up. Writing in Physical Review Letters, Brett Isham of Interamerican University of Puerto Rico, Bayamon, and colleagues identify a source of wave-driven auroral turbulence that has been observed under artificial conditions but never seen in natural settings.

In the auroral plasma, one form of turbulence consists of collective electron waves called Langmuir modes that can be trapped in cavitons—local bubbles of low plasma density. Cavitons have been artificially produced by sending powerful radio pulses into the ionosphere while looking for frequency modes of excited waves in backscattered radio signals. Isham et al. have analyzed data taken in previous experiments probing the ionosphere and find naturally occurring electron Langmuir waves that, in turn, drive oscillations of the plasma ions, and together these produce cavitons. The researchers then match these plasma oscillation signals against numerical calculations to show how the Langmuir modes cascade into caviton turbulence. Their findings answer long-standing questions about processes that shape auroral phenomena, as well as illuminate mechanisms behind turbulence in general. – David Voss


Subject Areas

Plasma Physics

Related Articles

X-Ray Spectral Imaging Probes How Sun-Like Plasma Blocks Light
Astrophysics

X-Ray Spectral Imaging Probes How Sun-Like Plasma Blocks Light

Temporal measurements in conditions similar to those in the Sun rebut a leading hypothesis for why models and experiments disagree on how much light iron absorbs. Read More »

Brighter X Rays from Ultralight Silver Material
Plasma Physics

Brighter X Rays from Ultralight Silver Material

Shooting a laser pulse at a porous silver target generates more intense x rays than previous targets, which will help studies of matter in extreme conditions. Read More »

Electrons Channel Surf to Ultrahigh Energies
Plasma Physics

Electrons Channel Surf to Ultrahigh Energies

A laser-driven electron accelerator delivers beams of 10-GeV electrons—an approach that could lead to cheaper, more compact alternatives to large-scale x-ray sources and particle accelerators. Read More »

More Articles