Synopsis

Watch Those Cavities

Physics 5, s34
Radar data confirm that an important mechanism for turbulence in Earth’s auroral plasma can occur naturally.
Joshua Strang via Wikimedia Commons

Earth’s aurora is a complex and beautiful display of space plasma physics, but one still in need of a full explanation of mechanisms that cause it. This shimmering light show arises as charged particles from the solar wind are channeled by the terrestrial magnetic field and hit oxygen and nitrogen atoms high in the atmosphere at the poles. As the energetic ions and electrons slam into the magnetic fields and the atmosphere, a rich soup of particle-wave interactions boils up. Writing in Physical Review Letters, Brett Isham of Interamerican University of Puerto Rico, Bayamon, and colleagues identify a source of wave-driven auroral turbulence that has been observed under artificial conditions but never seen in natural settings.

In the auroral plasma, one form of turbulence consists of collective electron waves called Langmuir modes that can be trapped in cavitons—local bubbles of low plasma density. Cavitons have been artificially produced by sending powerful radio pulses into the ionosphere while looking for frequency modes of excited waves in backscattered radio signals. Isham et al. have analyzed data taken in previous experiments probing the ionosphere and find naturally occurring electron Langmuir waves that, in turn, drive oscillations of the plasma ions, and together these produce cavitons. The researchers then match these plasma oscillation signals against numerical calculations to show how the Langmuir modes cascade into caviton turbulence. Their findings answer long-standing questions about processes that shape auroral phenomena, as well as illuminate mechanisms behind turbulence in general. – David Voss


Subject Areas

Plasma Physics

Related Articles

Solar Composition Altered by Plasma Waves
Plasma Physics

Solar Composition Altered by Plasma Waves

New solar observations indicate that plasma waves are responsible for the Sun’s outer atmosphere having different abundances of chemical elements than the Sun’s other layers. Read More »

Filamentation Observed in Wakefield Acceleration
Plasma Physics

Filamentation Observed in Wakefield Acceleration

A particle-beam-generating method—called wakefield acceleration—uses proton bunches, which can fragment into high-density filaments as a result of their interactions with plasma, new experiments show. Read More »

Nuclear-Fusion Reaction Beats Breakeven
Plasma Physics

Nuclear-Fusion Reaction Beats Breakeven

Scientists have now vetted details of the 2022 laser-powered fusion reaction that produced more energy than it consumed. Read More »

More Articles