Synopsis

Watch Those Cavities

Physics 5, s34
Radar data confirm that an important mechanism for turbulence in Earth’s auroral plasma can occur naturally.
Joshua Strang via Wikimedia Commons

Earth’s aurora is a complex and beautiful display of space plasma physics, but one still in need of a full explanation of mechanisms that cause it. This shimmering light show arises as charged particles from the solar wind are channeled by the terrestrial magnetic field and hit oxygen and nitrogen atoms high in the atmosphere at the poles. As the energetic ions and electrons slam into the magnetic fields and the atmosphere, a rich soup of particle-wave interactions boils up. Writing in Physical Review Letters, Brett Isham of Interamerican University of Puerto Rico, Bayamon, and colleagues identify a source of wave-driven auroral turbulence that has been observed under artificial conditions but never seen in natural settings.

In the auroral plasma, one form of turbulence consists of collective electron waves called Langmuir modes that can be trapped in cavitons—local bubbles of low plasma density. Cavitons have been artificially produced by sending powerful radio pulses into the ionosphere while looking for frequency modes of excited waves in backscattered radio signals. Isham et al. have analyzed data taken in previous experiments probing the ionosphere and find naturally occurring electron Langmuir waves that, in turn, drive oscillations of the plasma ions, and together these produce cavitons. The researchers then match these plasma oscillation signals against numerical calculations to show how the Langmuir modes cascade into caviton turbulence. Their findings answer long-standing questions about processes that shape auroral phenomena, as well as illuminate mechanisms behind turbulence in general. – David Voss


Subject Areas

Plasma Physics

Related Articles

Holding on to a Cold Plasma
Plasma Physics

Holding on to a Cold Plasma

Researchers have demonstrated that an ultracold neutral plasma can be magnetically confined, paving the way toward experiments that simulate its hot astrophysical counterparts. Read More »

Reproducing Space Plasma in the Lab
Astrophysics

Reproducing Space Plasma in the Lab

Electromagnetic fields rotate a plasma and produce conditions that resemble the region around a newly forming star. Read More »

Sculpting a Waveguide with Light
Optics

Sculpting a Waveguide with Light

A scheme for guiding high-intensity laser light allows a new level of control of the waveguide’s properties, which could boost the performance of laser-based particle accelerators. Read More »

More Articles