Synopsis

W Marks the Spot

Physics 5, s56
Two experimental collaborations at Fermilab report a new measurement of the W boson mass that leads to a better prediction of the mass of the Higgs boson.

Long before experimentalists at the Large Hadron Collider reported hints of the Higgs boson in particle collisions (see 13 March 2012 Viewpoint), physicists knew roughly what the Higgs mass had to be from measurements of the W boson. That’s because according to the standard model, the W boson, one of the particles that mediates the weak interaction, can emit a virtual Higgs boson and reabsorb it, which alters the W boson’s mass. The mass of the W boson also shifts due to a virtual process containing a top and bottom quark. So with a precise measurement of the W mass, and a good measurement of the top quark mass, it is possible to predict the mass of the Higgs boson.

Now the CDF and D0 Collaborations at Fermilab are each reporting in Physical Review Letters their new measurements of the W mass using datasets containing a total of about 2 million W decays to an electron or muon and a neutrino. By analyzing the kinematics from this large sample, the two experiments achieve a combined precision of about 0.02%.

These new values narrow the allowed range in top-W mass space. The band of top-W masses corresponding to the 115–127 GeV range of Higgs masses, allowed by direct searches, goes right through the allowed region determined by CDF and D0. If the LHC does find the Higgs boson in the 115–127 GeV mass window, it will be yet another success for the predictions of the standard model. – Robert Garisto


Subject Areas

Particles and Fields

Related Articles

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

More Articles