Synopsis

The Opposite of Friction

Physics 5, s96
Particles on a surface can have a negative mobility when subject to an oscillating driving force.
D. Speer et al., Phys. Rev. E (2012)

The motion of paired particles (dimers) on a surface appears in a wide variety of different contexts, such as the layer-by-layer growth of a semiconductor or the hopping of molecules in an optical lattice. In Physical Review E, David Speer at Bielefeld University, Germany, and colleagues report a nonintuitive effect based on their calculations of the motion of a dimer of two identical particles on an isotropic surface: in spite of the intrinsic symmetry of the system, a periodic external potential acting on the dimer can cause a spontaneous symmetry breaking. This is reflected in the net motion of the dimer in a specific direction, which depends on the initial conditions. The essential condition for this effect is a non-convex interaction potential between the dimer components, such as one where the potential changes from repulsive to attractive with distance.

Speer et al. show that if a dimer is also subjected to thermal noise, it can exhibit a divergent diffusion constant at low temperatures – a counterintuitive result, given that the diffusion coefficient of a particle on a surface usually vanishes as the temperature goes to zero. Furthermore, under the action of a constant force, the dimer can have a “negative mobility,” where it moves in the opposite direction to that of the applied force. According to the authors, this behavior could be observed in a nanofriction experiment, where the friction force may be acting not against, but along the pulling direction – a phenomenon bearing some resemblance to so-called superlubricity. – Hernan Rozenfeld


Subject Areas

Statistical Physics

Related Articles

Assessing the Brain at a Range of Frequencies
Biological Physics

Assessing the Brain at a Range of Frequencies

A new frequency-based analysis of recordings from neurons in the brain may give insight into brain pathologies such as Parkinson’s disease. Read More »

Information Flow in Molecular Machines
Biological Physics

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells. Read More »

Quantum Coherence Boosts Quantum Work
Atomic and Molecular Physics

Quantum Coherence Boosts Quantum Work

By manipulating a nitrogen vacancy’s single spin, researchers have shown that the more coherent the system is, the more work can be extracted from it. Read More »

More Articles