Synopsis

An Uncertain Big G

Physics 6, s115
Measured values of Newton’s constant of gravitation differ depending on the experiment, but researchers still aren’t sure why.
Courtesy T. Quinn/BIPM

Newton’s constant of gravitation, G, is a fundamental constant of nature that determines the gravitational force between two massive bodies. First measured over 200 years ago by Nevil Maskelyne, the precise value of G remains a moving target for modern experimentalists: Recent reports of the value of G vary by over 400 parts per million, 20 times greater than the uncertainty in any one measurement. To better understand this variation, Terry Quinn at the International Bureau of Weights and Measures, France, and colleagues looked for systematic errors in their own setup by rebuilding, from scratch, the apparatus they used to measure G twelve years ago and comparing the results.

Gravity is the weakest of the known forces, which makes measuring its effects on laboratory-sized objects difficult. To determine G, researchers use a device called a torsional balance, in which a suspended configuration of masses experiences a torque because of gravitational forces. However, one known problem in these experiments is temperature variation, which can cause certain components in the balance to expand or contract over the course of a measurement. Since the deflections being measured are small—about a hundredth of a degree—fluctuations can significantly affect the results.

Quinn et al.’s new experiment consists of a ribbon-suspended torsional balance that allows G to be measured in two independent ways: from angular deflection and from the electrostatic force needed to cancel out the effects of gravity. As reported in Physical Review Letters, the authors’ new value of G is 6.67545(18) x 10-11m3/(kgs2)—within the uncertainty of their first experiment, but significantly different from the values found by other groups. Why the discrepancy? Quinn et al. don’t know, but surmise it may come from unidentified experimental errors. – Katherine Thomas


Subject Areas

Gravitation

Related Articles

Gravitational-Wave Memory May Illustrate Spacetime Symmetries
Cosmology

Gravitational-Wave Memory May Illustrate Spacetime Symmetries

Observing gravitational-wave memory may help physicists test general relativity predictions about large-scale symmetries in the fabric of spacetime. Read More »

Colorful Primordial Black Holes
Astrophysics

Colorful Primordial Black Holes

Some ultralight black holes that formed soon after the big bang might have been exotic objects with a net “color charge” that left potentially observable signatures. Read More »

Cosmic Strings’ Imprints in High-Frequency Gravitational Waves
Astrophysics

Cosmic Strings’ Imprints in High-Frequency Gravitational Waves

Spacetime wrinkles known as cosmic strings, which might have formed in the early Universe, could be a dominant source of gravitational waves at ultrahigh frequencies, according to new calculations. Read More »

More Articles