Synopsis

Flexing Some Graphene Muscle

Physics 6, s154
Two groups propose coupling light into graphene surface plasmons by mechanically rippling the sheet of carbon atoms.
J. Schiefele et al., Phys. Rev. Lett. (2013)

Among its many talents, the two-dimensional carbon structure of graphene can sustain surface plasmons—collective electronic oscillations—from midinfrared to terahertz frequencies. Plasmons in this frequency range could be the basis of nanometer-size devices that join electronic functions with optics. However, getting light in and out of graphene plasmons is a tall order: it requires patterning the material with periodic structures to couple photons to the electronic oscillation. Not only does physical patterning prevent tunability, but it also causes energy loss due to scattering off the imposed structure. In Physical Review Letters, two independent research groups propose that inducing vibrations in graphene to create the necessary periodic grating could be a more efficient way to convert photons to plasmons.

In one report, Mohamed Farhat at the King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and his colleagues consider a sheet of graphene nudged at one side by a mechanical actuator. This generates flexural waves on the graphene sheet, which establish the grating pattern required to have energy flow from incident light into surface plasmons. By matching the wave number of the incident field with that of the plasmon, the coupling can be markedly enhanced. By their calculations, one could couple 50% of the light energy, as opposed to 2% for unmodulated graphene.

In the other report, Jürgen Schiefele, at the Complutense University of Madrid, Spain, and colleagues propose placing the graphene sheet on a piezoelectric substrate. Electrically induced mechanical vibrations set up the graphene modulation that matches the photon and plasmon phases. If developed practically, such devices could be useful in highly sensitive chemical detection, conversion of light to electricity, and nano-optoelectronics. – David Voss


Subject Areas

Graphene

Related Articles

Spin Control Without Magnetic Fields
Graphene

Spin Control Without Magnetic Fields

Researchers demonstrate that they can control the polarization direction of a spin current without having to apply a magnetic field, which could aid in implementing energy-efficient spintronics devices. Read More »

Valley-Polarized Jets in Graphene
Graphene

Valley-Polarized Jets in Graphene

Studying the current that flows in bilayer graphene, researchers have isolated electron jets associated with specific valley states. Read More »

Stretching Solves a Mystery of Magic-Angle Graphene
Condensed Matter Physics

Stretching Solves a Mystery of Magic-Angle Graphene

Numerical simulations show that discrepancies between experiments on graphene bilayers can be attributed to tiny amounts of strain applied to the samples.    Read More »

More Articles