Synopsis

Why the Solar Wind Blows Hot and Cold

Physics 6, s32
A new model shows that the nonuniform heating of ions in the solar wind may be explained by resonant interactions with a particular type of plasma wave.
Miloslav Druckmüller/Brno University of Technology, Peter Aniol, Vojtech Rusin

One of the biggest puzzles of the solar wind is why certain ions in the wind are hotter than others. The temperature of helium ions, for example, is on average 5 times higher than that of hydrogen ions. Now, writing in Physical Review Letters, Justin Kasper of the Harvard-Smithsonian Center for Astrophysics, Massachusetts, and collaborators present a model that demonstrates how certain plasma waves, called ion cyclotron waves, will preferentially heat heavier ions travelling below a threshold velocity.

The solar wind consists of electrons, protons (hydrogen ions), and a small smattering of heavier ions. This plasma is extremely thin, with roughly 40 ions per teaspoon at Earth’s orbital distance from the Sun. And yet, the wind is over 100,000 kelvin, as deduced from the proton velocity distribution. The cause of these high temperatures is unknown, but likely candidates include a variety of different plasma waves, which are fluctuations in the distribution of charged particles.

Ion cyclotron waves are plasma waves that correspond to oscillations in the circular motion of ions around a magnetic field. Previous work has considered how these waves might heat the solar wind, but the model presented in this work demonstrates how this heating can be selective at an atomic level. Their model is based on the realization that heat transfer from waves to ions is strongest when an ion can resonantly interact with waves moving both forward and backward with respect to the wind. This excludes both hydrogen ions and fast-moving ions that outrun the forward-moving waves. The theory’s predictions for ion temperatures and temperature anisotropies (hotter ions moving perpendicular to the magnetic field) match a compilation of 17 years of data from the Wind spacecraft. – Michael Schirber


Subject Areas

AstrophysicsPlasma Physics

Related Articles

The Cosmos as a Colloid
Astrophysics

The Cosmos as a Colloid

A new methodology for analyzing the 3D distribution of galaxies borrows techniques from the study of colloids and other disordered materials. Read More »

Analyzing the Gravitational-Wave Sky
Astrophysics

Analyzing the Gravitational-Wave Sky

A space-based observatory will detect gravitational waves from so many different types of sources at once that a global approach will be needed to crunch the data. Read More »

Stringy Particles in Complex Plasmas
Plasma Physics

Stringy Particles in Complex Plasmas

Simulations and an experiment aboard the International Space Station show that changes in the system’s repulsive forces are behind the alignment of particles embedded in an electrified plasma. Read More »

More Articles