Synopsis

Slow Down to Take a Better Spectrum

Physics 7, s113
The resolution and sensitivity of mass spectrometers can be improved by laser-cooling the measured sample species.

Mass spectrometry—an analytical technique routinely found in physics, chemistry, and biology labs—is used to determine the distribution of masses in a molecular sample. Improvements in sensitivity and mass resolution of this ubiquitous technique depend on the ability to prepare samples whose constituents’ velocities and positions are not too spread out. This is often a challenge because most instruments manipulate the molecules by first ionizing them, which produces molecules with a large velocity spread. To narrow the momentum distribution, a cooling stage is required, typically involving a buffer gas at room temperature.

But the cooling ability of a buffer gas cannot be easily improved beyond current levels. Researchers in the laboratory of Eric Hudson at the University of California, Los Angeles (UCLA), have now demonstrated how laser cooling can replace buffer-gas cooling to improve the resolution and sensitivity of a conventional mass spectrometer by over an order of magnitude. To achieve this, the authors make use of a technique called “sympathetic cooling,” in which a laser ablates atoms from a target (either barium or ytterbium) and another laser cools a specific isotope of the target element. Through Coulomb interactions, these isotopes can, in turn, slow down and cool the atoms or molecules whose mass spectra have to be determined.

The UCLA team carried out their proof-of-principle experiments in a conventional time-of-flight mass spectrometer equipped with sympathetic cooling. They found that both the mass resolution and the sensitivity increase by more than an order of magnitude. Although the mass resolution achieved in this setup is far from the current state-of-the-art, the authors suggest that their method could benefit even the best mass spectrometers available.

This research is published in Physical Review Applied.

–David Voss


Subject Areas

Atomic and Molecular Physics

Related Articles

Superpositions of Chiral Molecules
Chemical Physics

Superpositions of Chiral Molecules

Matter-wave diffraction can put chiral molecules into superpositions of left- and right-handed forms, enabling new studies of how the two states interact with their environment. Read More »

3D Collimation of Matter Waves
Atomic and Molecular Physics

3D Collimation of Matter Waves

An innovative matter-wave lens exploiting atomic interactions is able to slow the expansion of a Bose-Einstein condensate in three dimensions, thus reaching unprecedented ultralow temperatures. Read More »

3D-Printed Components for Cold Atoms
Quantum Physics

3D-Printed Components for Cold Atoms

Researchers demonstrate lighter, smaller optics and vacuum components for cold-atom experiments that they hope could enable the development of portable quantum technologies. Read More »

More Articles