Synopsis

Beating Turbulence to Find a Mate

Physics 7, s125
A statistical-physics model provides an accurate description of how animals communicate via pheromones in a turbulent atmospheric environment.

Many insects secrete pheromones to sound an alarm, claim territory, or attract a mate. Pheromones often travel long distances to reach their target, making the signals they transport highly susceptible to disruption by turbulent atmospheric flow and to competition with other olfactory stimuli. Understanding how pheromones propagate in real-world environments is thus a challenging fluid dynamics and neurobiology problem.

Now, Antonio Celani at ICTP in Trieste, Italy, and colleagues have developed a statistical mechanics approach to solve an entomological riddle: the olfactory search process of male moths, which are able to detect pheromones emitted by female moths hundreds of meters away. The researchers presented a theory based on so-called Lagrangian methods, which can trace the evolution of trajectories of pheromones in a turbulent airflow. They applied this theory to determine the intensity and duration of pheromone signals, validating the results with numerical simulations, controlled lab experiments, and field data. They found that pheromones emitted by female moths can be perceived by males located within a so-called “cone of detection” that can be as long as 1000 meters. They also found that pheromone signals are most commonly detected as intermittent “whiffs” that last only a few milliseconds, occurring within longer (few milliseconds to tens of seconds) periods in which pheromone levels fall below the insects’ sensitivity threshold.

The authors suggest that their findings could help design protocols for laboratory experiments that test olfactory responses and inform a range of practical applications. For example, by controlling the behaviors of insects exposed to pheromones, researchers could limit the ability of invasive or disease-carrying pests to mate.

This research is published in Physical Review X.

–Katherine Kornei


Subject Areas

Fluid DynamicsBiological Physics

Related Articles

Cold Calculus: Modeling Heat Exchange in the Arctic
Fluid Dynamics

Cold Calculus: Modeling Heat Exchange in the Arctic

A new model captures the flow of heat from ocean water into floating ice, providing an important input for efforts to predict future melting in the Arctic. Read More »

Soft Solid Flows Through a Pipe
Fluid Dynamics

Soft Solid Flows Through a Pipe

An ultrasoft material can move smoothly through a pipe, but the motion generates “furrows” on the material’s front surface. Read More »

Robotic Vacuum Cleaner for Microplastics
Fluid Dynamics

Robotic Vacuum Cleaner for Microplastics

Seong Jim Kim and Myoung-Woon Moon of the Korea Institute of Science and Technology have developed a device that can “vacuum” up tiny pieces of plastic floating on the surface of a body of water. Read More »

More Articles