Synopsis

Better than Diffraction

Physics 7, s3
A new microscopy method allows the imaging of nanostructures that are smaller than one eighth of the wavelength of the light used to illuminate them.
Courtesy Tung-Yu Su/National Taiwan University

Optical microscopes are widely used in all areas of science to image small objects. However, because of their design and the limits of diffraction, the smallest features that conventional microscopes can image are about half the wavelength of the light they use. Writing in Physical Review Letters, Shi-Wei Chu, at the National Taiwan University, and colleagues report a new technique that overcomes this resolution limit and can image nanostructures 70 nanometers in size—less than one eighth of the wavelength of the visible light used in their setup.

The group fitted a standard optical microscope with a laser and used it to image a sample containing gold nanoparticles. The laser wavelength was chosen so that it was resonant with the sharp plasmonic resonance exhibited by the particles. As a consequence, the laser light experienced particularly strong scattering. By adjusting the intensity of the laser, the researchers were able to reach, for the first time, a regime in which the light scattered from an isolated particle was saturated. With proper image processing techniques, such saturation behavior could be exploited to deliver sharper images of the plasmonic nanostructures.

While this method only works for gold nanoparticles, the particles can be selectively embedded into other materials, allowing them to be imaged. Although other recently demonstrated techniques, mostly based on fluorescence microscopy, allow comparable or even better resolution, this gold-nanoparticle method has an important advantage: samples can be imaged repeatedly without damage and with no loss in scattering intensity that, in fluorescence-based schemes, inevitably occur because of the bleaching of the fluorescing molecules. – Katherine Wright


Subject Areas

OpticsNanophysics

Related Articles

Real-Time Measurements of Earth’s Spin and Tilt
Optics

Real-Time Measurements of Earth’s Spin and Tilt

An array of ring lasers provides the first continuous measurement of Earth’s motion from a single location. Read More »

Diffracting a Beam of Organic Molecules
Optics

Diffracting a Beam of Organic Molecules

Researchers create diffraction patterns using beams made of large organic molecules, a first step toward creating an interferometer for these systems. Read More »

Lasers Peer Through the Forest Canopy
Geophysics

Lasers Peer Through the Forest Canopy

A remote laser sensing technology is providing unprecedented insights into the society and economy of ancient Maya. Read More »

More Articles