Synopsis

Hall Effect in Quasi-1D Conductors

Physics 7, s35
Experiments have uncovered a new form of Hall effect in organic conductors that confine current flow mostly along one-dimensional molecular strands.
K. Kobayashi et al., Phys. Rev. Lett. (2014)

Quasi- 1D organic conductors are made up of an array of long molecular strands that confine the flow of electrons to essentially one dimension. This reduced dimensionality results in unique behaviors, such as angle-dependent magnetoresistance. New experiments with a particular quasi- 1D organic conductor have revealed an unexpected Hall effect. As reported in Physical Review Letters, the characteristic Hall resistance oscillates as the orientation of the magnetic field is rotated with respect to the conductor’s lattice structure.

The Hall effect occurs when a magnetic field is applied perpendicular to the current flowing in a material. The magnetic force causes charge carriers to accumulate on the sides of the material, resulting in a transverse voltage. If the charge carriers are confined to two dimensions, the Hall effect becomes quantized, in that the Hall resistance (the ratio of transverse voltage to longitudinal current) takes on discrete values.

One would not expect a Hall effect in a truly one-dimensional conductor. However, Kaya Kobayashi of Aoyama Gakuin University in Kanagawa, Japan, and collaborators have discovered a Hall-like response in the quasi- 1D organic conductor (TMTSF) 2ClO4. They placed single crystals of this conductor in a 15-tesla magnet and measured the transverse voltage as current flowed along the molecular strands. When the team varied the angle between the magnetic field and the crystal lattice, the Hall resistance oscillated from positive to negative values, crossing zero at so-called “magic angles.” These angles correspond to lattice planes that connect a molecular strand to its nearby neighbors. To explain this novel Hall effect, the researchers assume the magnetic field excites an orbital resonance that allows electrons to skip between different strands. – Michael Schirber


Subject Areas

MagnetismMaterials Science

Related Articles

A Unifying View of Thin-Plate Fracture
Materials Science

A Unifying View of Thin-Plate Fracture

A new theoretical framework simultaneously describes the bending and the fracturing of thin plates, offering a way to tackle complex cracking problems that involve both modes of mechanical deformation. Read More »

The Geometry of Basket Weaving
Materials Science

The Geometry of Basket Weaving

Researchers teamed up with an artist to tweak a popular basket-weaving approach, finding a way to weave ribbons to produce any curvature desired.   Read More »

A Solar Paradox Resolved
Astrophysics

A Solar Paradox Resolved

A new model of light-matter interactions solves a decades-old problem by reconciling theoretical predictions and experimental observations of polarized light from the Sun. Read More »

More Articles