Synopsis: Spins Move between Insulators

Physics 7, s58
Experiments demonstrate a surprising transfer of electron spin to luminescent defects in diamond from a nearby magnet, even though the materials have no mobile electrons to carry the spin.
C. Wolfe et al., Phys. Rev. B (2014)

Transporting electron spin polarization could enable quantum computing or ultrafast alternatives to electronics, but most previous demonstrations have included at least one metal. Now, in a Rapid Communication in Physical Review B, Chris Wolfe, Vidya Bhallamudi, and colleagues at Ohio State University, Columbus, show evidence for transfer between insulators, although the mechanism is still mysterious.

The researchers monitored a defect in diamond, comprising a nitrogen impurity paired with a missing carbon atom, or vacancy. This widely studied “NV center” hosts an electron whose spin alignment is very long-lived in large crystals and which affects the intensity of photoluminescence that the center emits. The team measured emission from a film of nanodiamonds, each 50 200 nanometers in size and containing thousands of NV centers, that they had deposited on a thin layer of the insulating magnet, yttrium iron garnet (YIG). As expected, the light level from the NV centers changed dramatically when they injected microwaves that matched the centers’ resonant frequency. But it also changed when the microwaves were tuned to excite the magnetization of the YIG, suggesting that altered spin alignments in this layer moved to NV centers hundreds of nanometers away.

The researchers checked that the YIG shared its spin alignment with the nanodiamonds even when the two were separated by a 300-nm-thick silver electrode. The transfer mechanism remains unclear because there are no metallic electrons to carry the spin and because the very different frequencies make direct transfer unlikely. Still, the results could allow new ways to manipulate and monitor the spin in insulators. – Don Monroe


Subject Areas

MagnetismSpintronics

Related Articles

Synopsis: Solving a Magnetic Puzzle
Condensed Matter Physics

Synopsis: Solving a Magnetic Puzzle

Spectroscopic measurements explain why a van der Waals ferromagnet displays different magnetic behavior in its layered and bulk forms. Read More »

Viewpoint: Finding Spin Hedgehogs in Chiral Crystals
Magnetism

Viewpoint: Finding Spin Hedgehogs in Chiral Crystals

The observation of radial spin texture in chiral tellurium crystals could lead to greater control over electron transport.  Read More »

Synopsis: Spin Transport in Nonmagnetic Materials
Spintronics

Synopsis: Spin Transport in Nonmagnetic Materials

Interactions between electron spins and acoustic lattice vibrations in a nonmagnetic material could generate a spin current over a long distance. Read More »

More Articles