Synopsis

Dense Suspensions Spread Best

Physics 7, s87
High-speed droplets containing a dense suspension of particles could be used to make universal coatings that spread on many types of surfaces.
L. A. Lubbers et al., Phys. Rev. Lett. (2014)

How well wet paint and other liquid-particle suspensions coat a surface depends on the surface’s wettability and the liquid’s viscosity. These properties must therefore be carefully tuned in applications that require an evenly thick liquid coating, such as spray paints for cars and inkjet printing. Writing in Physical Review Letters, Heinrich Jaeger, Wendy Zhang, and their colleagues at the University of Chicago, Illinois, show that dense suspensions, which contain more particles than liquid, could behave as “universal” coatings that spread out evenly on many surfaces.

The researchers prepared suspensions of 250-micrometer-sized ceramic spheres in either water or oil and released drops of the liquids from a height of ~ 1.5 meters onto a flat, solid surface. On impact, the drops flattened, initially spreading out to form one-particle-thick films across the surface. As the films continued to expand, they formed a lace-like pattern containing regions with only liquid and no particles—a pattern the authors dubbed a “splat.” Simulations and modeling showed that, under the conditions used by the researchers, the expansion was dominated by the speed of the drop on impact, while properties like surface tension, viscous drag, and surface wetting had little effect on the impact dynamics and the resulting splat pattern.

The regime of impact and spreading parameters studied by Jaeger, Zhang and their colleagues, should also be relevant to splats containing nanoscale particles. For applications that do not require a uniform film on the particle level, dense suspensions could provide a convenient way to quickly and robustly deliver thin coatings. – Katherine Wright


Subject Areas

Soft Matter

Related Articles

Measuring Entropy in Active-Matter Systems
Soft Matter

Measuring Entropy in Active-Matter Systems

A tool for estimating the local entropy production rate of a system enables the visualization and quantification of the out-of-equilibrium regions of an active-matter system. Read More »

How Materials Get the Creeps
Condensed Matter Physics

How Materials Get the Creeps

Researchers have developed a comprehensive theory of creep flow—a type of flow seen in amorphous solids such as coffee foam. Read More »

How Soap Molecules Move Over Water
Soft Matter

How Soap Molecules Move Over Water

Researchers can now predict exactly how soap molecules spread across a body of water, an everyday but surprisingly complex process. Read More »

More Articles