Synopsis

A Bumpy Ride for Atoms

Physics 8, s121
Aging in metallic glasses occurs via intermittent rearrangements of the atoms and is not a steady, continuous process as previously thought.
Z. Evenson et al. Phys. Rev. Lett. (2015)

Metallic glasses—alloys with an amorphous glasslike structure—are popular technological materials because of their strength and resistance to fracture. However, these properties can decay over time, making the glass more brittle and prone to cracking. How this “aging” occurs, though, is unclear: Macroscopic measurements suggest a slow and steady rearrangement of the alloy’s atoms, but atomic-scale probes indicate a more complex and heterogeneous process. Providing support for this second picture, Zach Evenson at the Technical University Munich, Germany, and colleagues show that aging of a metallic glass occurs via localized and intermittent rearrangements of atoms. Understanding how atoms behave in metallic glasses as they age could allow more robust versions of these materials to be designed.

Evenson and co-workers cooled a palladium-based metallic glass from a liquid to a glassy state. Using x rays, they monitored the subsequent density fluctuations of the alloy as a function of time. These fluctuations are proportional to the frequency of the structural rearrangement of the atoms. They found that just after the glass had formed, it sat in a uniform state with density fluctuations that stayed constant with time. The alloy then entered an “aging” regime with slower density fluctuations. This slow down was not a continuous process; instead, the density fluctuations abruptly decreased to a fixed value, stayed there for a short period of time, and then abruptly dropped again—much like stop-and-go traffic on a congested freeway. Evenson and colleagues think these complicated dynamics indicate a system in which internal stresses, stored at the atomic level, relax in an intermittent and discontinuous manner.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Materials Science

Related Articles

Building Novel Carbon Allotropes
Condensed Matter Physics

Building Novel Carbon Allotropes

Calculations indicate that a form of carbon synthesized from pentagonal hydrocarbon molecules could have unusual electrical and mechanical properties. Read More »

Coin Flip Decides Material’s Fate
Materials Science

Coin Flip Decides Material’s Fate

Stretching fibers until they fail reveals a correspondence between material strength and a 300-year-old math puzzle involving coin flips. Read More »

Simulations Reveal Quantum Tunneling Events in Glass
Materials Science

Simulations Reveal Quantum Tunneling Events in Glass

In a glass, the freedom of atoms to move by quantum tunneling depends on how fast the glass was initially formed. Read More »

More Articles