Synopsis

Two New Particles Enter the Fold

Physics 8, s16
Researchers report the detection of two new subatomic particles made of three quarks from each of the possible quark families.

Physicists at the Large Hadron Collider (LHC) have detected two never-before-seen subatomic particles. These Ξb particles were predicted by the quark model and estimated to have masses roughly six times that of the proton, but previous experiments have not run at high enough energy to produce these massive particles. The detections offer new precision measurements of the Ξb masses, which will place tighter constraints on particle physics theories.

Quarks come in three families: up/down, strange/charm, and bottom/top. In 2007, physicists observed the first particle with one quark from each family: Ξ-b, consisting of one bottom, one strange, and one down quark, giving it a negative charge of -1. However, this is just the lowest mass version of this three-family quark combination. Quark theory predicts the existence of two higher mass cousins of Ξ-b, called Ξ-b and Ξ*-b, which are characterized by their spin of 1/2 and 3/2, respectively.

To confirm the existence of these short-lived Ξ-b particles, the LHCb experiment at CERN looked for evidence of Ξ-b decays in data from proton-proton collisions at energies of 7 and 8 tera-electron-volts. Specifically, they investigated decays into a neutral Ξ0b and a negatively charged pion ( π-). They observed signatures for two particles at masses of 5935 and 5955 mega-electron-volts, corresponding to Ξ-b and Ξ*-b. The results came as a surprise, as many models predicted that the Ξ-b was not massive enough to decay through this route, and a search at another CERN experiment had not found the equivalent decay of a closely related particle Ξ0b. Using the new, very precise mass measurements, theorists will be able to improve their models—specifically those that predict the mass of other quark-based particles.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

Particles and Fields

Related Articles

Primordial Soup Was Full of Flavors
Particles and Fields

Primordial Soup Was Full of Flavors

Top quarks and antiquarks have been detected in heavy-ion collisions at the Large Hadron Collider, showing that all six quark flavors were present in the Universe’s first moments. Read More »

Sifting Junk for Dark Matter
Astrophysics

Sifting Junk for Dark Matter

Elena Pinetti searches for dark matter using JWST calibration images that other researchers discard. Read More »

Reducing the Dark Current
Particles and Fields

Reducing the Dark Current

Researchers have demonstrated a method for suppressing unwanted electrons in bright electron beam sources. Read More »

More Articles