Synopsis

Two New Particles Enter the Fold

Physics 8, s16
Researchers report the detection of two new subatomic particles made of three quarks from each of the possible quark families.

Physicists at the Large Hadron Collider (LHC) have detected two never-before-seen subatomic particles. These Ξb particles were predicted by the quark model and estimated to have masses roughly six times that of the proton, but previous experiments have not run at high enough energy to produce these massive particles. The detections offer new precision measurements of the Ξb masses, which will place tighter constraints on particle physics theories.

Quarks come in three families: up/down, strange/charm, and bottom/top. In 2007, physicists observed the first particle with one quark from each family: Ξb-, consisting of one bottom, one strange, and one down quark, giving it a negative charge of -1. However, this is just the lowest mass version of this three-family quark combination. Quark theory predicts the existence of two higher mass cousins of Ξb-, called Ξb- and Ξb*-, which are characterized by their spin of 1/2 and 3/2, respectively.

To confirm the existence of these short-lived Ξb- particles, the LHCb experiment at CERN looked for evidence of Ξb- decays in data from proton-proton collisions at energies of 7 and 8 tera-electron-volts. Specifically, they investigated decays into a neutral Ξb0 and a negatively charged pion ( π-). They observed signatures for two particles at masses of 5935 and 5955 mega-electron-volts, corresponding to Ξb- and Ξb*-. The results came as a surprise, as many models predicted that the Ξb- was not massive enough to decay through this route, and a search at another CERN experiment had not found the equivalent decay of a closely related particle Ξb0. Using the new, very precise mass measurements, theorists will be able to improve their models—specifically those that predict the mass of other quark-based particles.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

Particles and Fields

Related Articles

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

More Articles