Synopsis

Quantum Bending of Light

Physics 8, s18
Theorists calculate how quantum gravity effects could alter the bending of light induced by massive objects.
NASA

Light traveling close to an object gets deflected from its path because of the pull of gravity. For a massive object like the Sun, this deflection is measurable: The best measurements to date show that the gravitational pull of the Sun deflects light by 0.00049º—in line with the predictions of general relativity. Now Niels Bjerrum-Bohr, at the Niels Bohr Institute in Denmark, and colleagues have calculated how this deflection would be altered when gravity is described as a quantum field.

The authors describe gravity using an effective-field theory—a low-energy approximation of a possible underlying quantum-field theory of gravity. This allowed them to compute how photons couple to gravitational effects, formulating an analytical solution to the problem of light deflection by a heavy object like the Sun or a Schwarzschild black hole. While their predicted quantum correction is too small to be measured experimentally (the effect of gravity is 80 orders of magnitude bigger), they show that quantum effects do cause a difference. This difference arises from the fact that massless particles like photons are no longer confined to traveling exactly on geodesics (in general relativity, the straight lines modified by spacetime curvature along which any free-falling particle moves). In particular, they are predicted to bend differently depending on their spin. These departures from the behavior predicted by general relativity amount to a deviation from Einstein’s equivalence principle. The computational framework presented by the authors provides a simple way to evaluate the possible effects of quantum gravity on light bending and other cosmological phenomena.

This research is published in Physical Review Letters

–Katherine Wright


Subject Areas

GravitationQuantum Physics

Related Articles

Qubits Could Act as Sensitive Dark Matter Detectors
Quantum Physics

Qubits Could Act as Sensitive Dark Matter Detectors

A detector made from superconducting qubits could allow researchers to search for dark matter particles 1000 times faster than other techniques can. Read More »

Rising Tides on Black Holes
Gravitation

Rising Tides on Black Holes

New calculations show that spinning black holes—unlike nonspinning ones—can be tidally deformed by a nonsymmetric gravitational field. Read More »

Measuring Higher Dimensional “Qudits” for Computation
Quantum Information

Measuring Higher Dimensional “Qudits” for Computation

With a technique called self-guided tomography, researchers accurately measure the states of qudits—quantum systems like qubits but with more than two dimensions.  Read More »

More Articles