Synopsis

Quantum Bending of Light

Physics 8, s18
Theorists calculate how quantum gravity effects could alter the bending of light induced by massive objects.
NASA

Light traveling close to an object gets deflected from its path because of the pull of gravity. For a massive object like the Sun, this deflection is measurable: The best measurements to date show that the gravitational pull of the Sun deflects light by 0.00049º—in line with the predictions of general relativity. Now Niels Bjerrum-Bohr, at the Niels Bohr Institute in Denmark, and colleagues have calculated how this deflection would be altered when gravity is described as a quantum field.

The authors describe gravity using an effective-field theory—a low-energy approximation of a possible underlying quantum-field theory of gravity. This allowed them to compute how photons couple to gravitational effects, formulating an analytical solution to the problem of light deflection by a heavy object like the Sun or a Schwarzschild black hole. While their predicted quantum correction is too small to be measured experimentally (the effect of gravity is 80 orders of magnitude bigger), they show that quantum effects do cause a difference. This difference arises from the fact that massless particles like photons are no longer confined to traveling exactly on geodesics (in general relativity, the straight lines modified by spacetime curvature along which any free-falling particle moves). In particular, they are predicted to bend differently depending on their spin. These departures from the behavior predicted by general relativity amount to a deviation from Einstein’s equivalence principle. The computational framework presented by the authors provides a simple way to evaluate the possible effects of quantum gravity on light bending and other cosmological phenomena.

This research is published in Physical Review Letters

–Katherine Wright


Subject Areas

GravitationQuantum Physics

Related Articles

Zeroing In on Zero-Point Motion Inside a Crystal
Condensed Matter Physics

Zeroing In on Zero-Point Motion Inside a Crystal

A nanocrystal cooled to near absolute zero produces an unexpected light emission, which is shown to arise from quantum fluctuations in the crystal’s atomic lattice. Read More »

Seeking Signatures of Graviton Emission and Absorption
Particles and Fields

Seeking Signatures of Graviton Emission and Absorption

A proposed experiment may deliver evidence for the emission or absorption of gravitons—an advance that might one day enable gravity to be controlled much like electromagnetism is today. Read More »

A Shortcut to a Ground State
Quantum Physics

A Shortcut to a Ground State

Theorists have proposed a universal recipe for trying to quickly prepare a system in a desired ground state without exciting it. Read More »

More Articles