Synopsis

Spin Transport in Room-Temperature Germanium

Physics 8, s56
Germanium layers can carry spin-polarized currents over several hundred nanometers at room temperature, a key asset for spintronic applications.
Sergei Dushenko/Osaka University and Masashi Shiraishi/Kyoto University

Finding materials that can sustain a spin-polarized current is key for further developing the field of spintronics. Germanium is a promising material because it has a higher carrier mobility than silicon, which could allow for faster devices, but spin transport in germanium has so far only been clearly demonstrated at low temperature (below 225K). A new room-temperature experiment shows that spin currents can travel more than half a micrometer along a thin slab of doped germanium.

Spintronics—in which electron spin is used to carry information—could revolutionize the electronics industry by increasing computation speed and lowering power consumption. But in most materials, scattering and fluctuating magnetic fields can rapidly flip spins, causing the loss of spin polarization and the associated information. Germanium has a particular lattice symmetry that should reduce much of this spin relaxation. However, since germanium is nonmagnetic, measuring spin transport is not easy because spin currents have to be created in a magnetic material and injected into germanium.

Masashi Shiraishi of Kyoto University, Japan, and his colleagues previously developed a method for studying room-temperature spin transport in semiconductors. They now apply the method to a germanium layer highly doped with an electron donor (phosphorous) and grown on a silicon substrate. On one side of the layer, a ferromagnetic strip, excited by microwaves, injected a spin current into the germanium. This current diffused towards a metallic strip on the opposite side, where it was measured by a detector sensitive to spin-polarization. The team derived a room-temperature spin diffusion length of 660 nanometers—a value comparable to other spin-transport materials—suggesting that germanium could be a potential building block for spin-based transistors.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

MagnetismSemiconductor PhysicsMaterials Science

Related Articles

Water is Behind the Electrification of Sand
Geophysics

Water is Behind the Electrification of Sand

The results of new experiments indicate that surface-adsorbed water molecules are responsible for contact electrification in granular matter, a finding that challenges established models of this phenomenon. Read More »

A New Route to Room-Temperature Ferromagnets
Materials Science

A New Route to Room-Temperature Ferromagnets

A novel crystalline material is readily grown from low-melting-temperature mixtures—a result that points toward a new route to above-room-temperature ferromagnets. Read More »

A New Way to Manipulate a Skyrmion Crystal
Magnetism

A New Way to Manipulate a Skyrmion Crystal

Researchers control the rotation of a periodic array of magnetic quasiparticles by illuminating the system with a series of precisely timed polarized laser pulses. Read More »

More Articles