The Heavy Limit of Dark Matter

Physics 9, s27
A theoretical investigation of super-heavy dark matter particles finds that their existence might be discerned in the cosmic microwave background.

Dark matter is often assumed to consist of particles that weigh as much as a proton but interact like a neutrino. However, dark matter particles could be much heavier, as well as much less interacting. New work from a team of theorists explores the upper limit of mass with a dark matter candidate that they call Planckian interacting dark matter (PIDM). The researchers show that the PIDM model implies a large number of primordial gravitational waves, which could produce a detectable signal in forthcoming cosmic microwave background (CMB) observations.

Dark matter candidates are not hard to come by. Many theories predict weakly interacting particles with masses near the electroweak scale (roughly 100 times the proton mass). These so-called WIMPs would presumably be created in the hot, dense, early Universe with an abundance that is consistent with the dark matter mass density observed in the current Universe.

The trouble is that collider experiments have yet to see any hints of WIMPs, which might mean that researchers will have to look beyond the electroweak scale. Mathias Garny of CERN and his colleagues from CP 3-Origins in Denmark propose a particle with a mass near another natural scale, the Planck mass ( 1019 times the proton mass, or about a microgram). The team assumed these PIDM particles interact with ordinary matter only through gravitation and that large numbers of them formed in the very early Universe during the cosmological epoch called “reheating.” For this model to work, however, the temperature of reheating would have to be higher than usually assumed. A hotter reheating would result in more gravitational waves, which could be confirmed (or ruled out) by next-generation CMB experiments.

This research is published in Physical Review Letters.

–Michael Schirber

Subject Areas

Particles and Fields

Related Articles

Close Passes Give Atoms Tiny Quantum Kicks  
Atomic and Molecular Physics

Close Passes Give Atoms Tiny Quantum Kicks  

A new technique in which atoms move slowly through a diffraction grating lets researchers measure the tiny Casimir-Polder interaction, a force that arises from quantum vacuum fluctuations. Read More »

Measuring the Neutron Lifetime with Record-Breaking Precision
Particles and Fields

Measuring the Neutron Lifetime with Record-Breaking Precision

An improved version of a “bottle” experiment lets researchers lower the uncertainty on this important parameter—but a tantalizing discrepancy remains. Read More »

Unraveling <i>D</i>-Meson Mixing
Particles and Fields

Unraveling D-Meson Mixing

The observation of neutral D mesons oscillating into their antiparticle partners provides constraints on new heavy particles that can’t be directly produced by high-energy colliders.     Read More »

More Articles