Synopsis

Whisky-Inspired Coatings

Physics 9, s33
As a whisky drop dries, a combination of molecules in the liquid ensure a spatially uniform deposition—a finding that could inspire coating technologies.
Ernie Button

Surface engineers might prefer whisky over coffee, at least as a model liquid for creating films and coatings. Unlike coffee, whisky tends to leave uniform deposits when it dries. Hyoungsoo Kim and Howard Stone from Princeton University, New Jersey, and their colleagues explored whisky’s secret by measuring the fluid motion within evaporating droplets. The results showed that a combination of molecules—surfactants and polymers—help guide the deposition process in whisky.

Many solutions produce an uneven stain when they dry out on a surface. This so-called “coffee-ring effect” arises because evaporation is faster at the edges of a drop than at the center. When liquid flows outward to replenish this loss, particles in the solution are dragged along and deposited at the edge. This nonuniform residue is undesirable for many applications, including 3D printers that build layer upon layer using liquid deposition.

Researchers have previously found that mixing solvents (such as water and alcohol) can reduce the coffee-ring effect, but only for submillimeter drops. Large drops of whisky, however, appear to produce uniform stains, as revealed in recent images taken by Phoenix-based photographer Ernie Button. Intrigued, Stone’s team used florescent markers to track the motion of fluid in whisky drops and observed inward flow that partly countered the outward flow from differential evaporation. They explained this behavior as due to fat-like surfactant molecules that lower the surface tension. As a drop evaporates, the surfactants collect on the edge, creating a tension gradient that pulls liquid inward (the so-called Marangoni effect). In addition, plant-derived polymers stick to the glass, helping to channel particles to the substrate where they adhere. To confirm this picture, the researchers showed that whisky-like liquids lacking either polymers or surfactants did not produce uniform stains.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

Fluid DynamicsMaterials Science

Related Articles

Revamp for High-Pressure-Superconductivity Measurements
Materials Science

Revamp for High-Pressure-Superconductivity Measurements

The pressures at which some elements start superconducting are so high that making detailed measurements of the transition has been impossible—until now. Read More »

Ocean Currents Resolved on Regional Length Scales
Computational Physics

Ocean Currents Resolved on Regional Length Scales

Using a detailed simulation, researchers reveal how climate change will affect the regional dynamics of the conveyor-belt-like circulation of water through the Atlantic Ocean. Read More »

A Slight Curvature Gives Pebbles an Impacting Edge
Fluid Dynamics

A Slight Curvature Gives Pebbles an Impacting Edge

Pebbles that are slightly curved—rather than completely flat—exert the highest impact forces when dropped onto a watery surface. Read More »

More Articles