Synopsis

No Vacancy for Tunneling

Physics 9, s53
The tunneling rate for cold atoms in an optical lattice can be made to depend on whether a neighboring site is occupied—a behavior that may reflect the tunneling in complex materials.
F. Meinert et al., Phys. Rev. Lett. (2016)

Cold atoms in an optical lattice are often used to simulate other systems, with the advantage that researchers can create a potential-energy landscape of their choosing. A new study has demonstrated a novel synthetic potential in which the tunneling between lattice sites depends on whether the destination site is occupied or vacant. Such occupation-dependent tunneling processes are believed to have crucial influence on complex materials such as superconductors and ferromagnets.

Recent work has shown that the tunneling rate for cold atoms can be controlled by periodically driving, or “shaking,” the optical lattice in which the atoms are arranged. Researchers have used this so-called Floquet engineering to simulate a wide range of phenomena, such as ferromagnetism and topological insulators.

Normally, shaken lattices modify the tunneling of a single atom, irrespective of the position of other atoms in the lattice. Hanns-Christoph Nägerl, from the University of Innsbruck in Austria, and his colleagues devised a system with occupation-dependent tunneling. The team placed bosonic cesium atoms in a three-dimensional optical lattice and applied a magnetic field to control the atom-atom interaction. Following a periodic modulation of this interaction, the team measured the distribution of atoms in the lattice, showing that the tunneling rate of atoms into occupied sites could be precisely tuned—and, moreover, set to zero—by varying the amplitude and duration of the modulation. Although not directly related to a specific material, this cold-atom system provides a test bed for investigating the possible role of occupation-dependent tunneling in complex materials.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics.


Subject Areas

Atomic and Molecular Physics

Related Articles

Microwave Manipulation of Cold Molecules
Atomic and Molecular Physics

Microwave Manipulation of Cold Molecules

Interactions between molecules can be tuned using microwaves, a finding that could be leveraged for studying quantum systems. Read More »

Diffracting a Beam of Organic Molecules
Optics

Diffracting a Beam of Organic Molecules

Researchers create diffraction patterns using beams made of large organic molecules, a first step toward creating an interferometer for these systems. Read More »

Magnetic Solitons in a Bose-Einstein Condensate
Atomic and Molecular Physics

Magnetic Solitons in a Bose-Einstein Condensate

Two independent experiments generate self-reinforcing magnetic waves in a condensate containing both spin-up and spin-down atoms. Read More »

More Articles