Focus

A New Way to Make Elements

Phys. Rev. Focus 17, 14
The puzzling origins of some isotopes in the solar system are explained by accounting for blasts of antineutrinos in the first seconds of a supernova.
NASA/CXC/SAO/STScI/JPL-Caltech
Element factory. New research suggests that antineutrinos unleashed in supernovae such as Cassiopeia A (remnant shown here) can forge rare isotopes that nuclear physicists had been unable to explain.

The neat order of chemistry’s periodic table hides some riddles. Physicists have long believed that exploding stars forge the heavier elements, but the accepted ways to assemble atomic nuclei in the hot flash of a supernova cannot explain the existence of some unusual isotopes. To create them, researchers now propose a new process that involves antineutrinos, ghostly particles that supernovae generate in huge numbers. The blazingly fast reactions, described in the 14 April PRL, may explain some of the rarer ingredients of our solar system and the distinct chemical patterns seen in primitive stars.

Stars fuse hydrogen and helium into elements as heavy as iron and nickel, but the heavier elements come mainly from supernovae, the explosions of giant stars that also create dense neutron stars or occasionally black holes at their cores. In the superhot explosion, most heavy elements arise when helium nuclei assemble into more massive nuclei, which then absorb neutrons that decay into protons. These rapid-fire reactions forge elements that climb the periodic table. But when nuclear astrophysicists studied these processes and others in detail, they found gaps. For example, the sun and meteorites contain some isotopes of the metals molybdenum and ruthenium with a high proportion of protons, but with no clear origins in the accepted series of reactions.

Now a European-led team thinks it knows why. Graduate student Carla Fröhlich of the University of Basel, Switzerland, and colleagues examined models of a supernova’s earliest moments. Last year they and a separate team of astrophysicists independently realized that there is a proton-rich region surrounding the fresh neutron star during the first few seconds of the explosion [1,2]. Isotopes that already have a high fraction of protons cannot capture these additional protons and progress to new elements because of the repulsive force from the positive charges jammed into their nuclei.

But Fröhlich and her colleagues found that some of the protons in this region transform into neutrons by reacting with antineutrinos streaming from the neutron star. These extra neutrons are critical during the early seconds when the material is still hot enough to make heavy, proton-rich isotopes. Some nuclei packed with the maximum allotment of protons grab a neutron and so generate enough binding force to capture another proton through the strong nuclear attraction. Within a few seconds, this cycle creates a series of stable isotopes containing as high a proportion of protons as nuclear forces allow–including the problematic varieties of molybdenum and ruthenium. “Without the antineutrinos creating a constant supply of free neutrons, this would not be possible,” says coauthor Gabriel Martínez-Pinedo of the research institute GSI in Darmstadt, Germany.

Other physicists view the process as a key step forward. “These isotopes have been an enigma for nucleosynthesis theory since its inception,” says Robert Hoffman of Lawrence Livermore National Laboratory in California, part of a team that has confirmed and expanded upon the new work with independent models of the proton-rich region.

Lighter isotopes created by this same process–notably strontium, yttrium, and zirconium–also may appear especially clearly in the most primitive stars, says astronomer Timothy Beers of Michigan State University in East Lansing. Old stars should have relatively clean imprints of these isotopes manufactured by the first supernovae and unmarred by chemical processing later on. Indeed, Beers notes, one of the most chemically primitive stars observed in the galaxy contains a surprising amount of strontium–far more than nucleosynthesis models had predicted, but consistent with the new study.

–Robert Irion

Robert Irion is a freelance science writer based in Santa Cruz, CA.

References

  1. J. Pruet, et al., Astrophys. J. 623, 325 (2005)
  2. C. Fröhlich et al., Astrophys. J. 637, 415 (2006)

Subject Areas

CosmologyNuclear Physics

Related Articles

Cosmic Strings’ Imprints in High-Frequency Gravitational Waves
Astrophysics

Cosmic Strings’ Imprints in High-Frequency Gravitational Waves

Spacetime wrinkles known as cosmic strings, which might have formed in the early Universe, could be a dominant source of gravitational waves at ultrahigh frequencies, according to new calculations. Read More »

Lanthanum Less Abundant Than Previously Thought
Nuclear Physics

Lanthanum Less Abundant Than Previously Thought

Measurements related to the production of lanthanum in stars where elements are thought to form via the “i process” indicate that less of the element is produced than models predict. Read More »

Making Neutron-Deficient Nuclei
Nuclear Physics

Making Neutron-Deficient Nuclei

Adding neutrinos to an existing nucleosynthesis recipe can account for the puzzling existence of neutron-deficient heavy nuclei. Read More »

More Articles