Focus: Tracking Nuclei on the Move

Phys. Rev. Focus 18, 13
A new technique tracks the motion of water molecules through pores in rocks, which could help in oil prospecting.
Phys. Rev. Lett. 97, 175502 (2006)
Full of holes. An x-ray computed tomography (CT) scan of sandstone shows a range of sizes of pores that can hold oil. A new technique probes the motion of molecules between such pores to learn how readily oil could be extracted.

Geologists routinely probe subterranean atomic nuclei using nuclear magnetic resonance (NMR) to learn about the porous structure of rocks that hold petroleum. Now, in the 27 October PRL, researchers show how to extend the technique to track the motion of liquid between different pores. The method could help petroleum engineers extract oil more efficiently. It could also allow researchers to monitor the motion of molecules between different microscopic regions in liquid crystals or biological cells.

To learn about a rock’s structure using NMR, researchers first expose a water-saturated rock to a strong magnetic field. The nuclei of hydrogen atoms in the water molecules act like tiny bar magnets because of their internal spins, which tend to line up with the applied field. Then an oscillating field is briefly added to the initial field to jostle these aligned spins, causing them to wobble in synch like off-balance tops. Monitoring the wobbles provides information about the rock structure.

For more than a decade, petroleum engineers have been sending NMR rigs down candidate oil wells to learn about the surrounding rock. For example, they can measure a time called T2, the time it takes the wobbling spins to lose synchronization with the original oscillating field. Collisions with the walls of a pore hasten this so-called dephasing, so molecules in a small pore, which hit the walls more frequently, have a shorter T2. “It’s a marker for the size of a pore,” says Paul Callaghan of Victoria University of Wellington, New Zealand. But knowing the range of pore sizes doesn’t tell you whether the pores are isolated or are connected well enough to allow trapped oil to move through the rock and out of the well. For that, you need to know if molecules move from pore to pore, and if so, how rapidly. This information comes from measuring changes in T2 over time.

Two research teams have previously measured a change in T2 values in the lab, but only over a fixed amount of time [1,2]. They measured T2, waited a “mixing time” of tens of milliseconds, and then measured again. The technique allowed them to track populations of molecules and learn the fraction that had moved to a new T2, and therefore a different-sized pore. But the teams didn’t vary the mixing time to see how rapidly the entire population of water molecules moved to new pores, although they did measure many other properties.

Callaghan and his Victoria graduate student Kate Washburn have now varied the mixing time for a chunk of sandstone and “followed the actual dynamics of the exchange process,” says Callaghan. Using the right computational techniques was critical to their success. Extracting T2s from the raw data involves a difficult mathematical maneuver called a two-dimensional inverse Laplace transform, and the team benefited from recent advances in the computer algorithms, Callaghan says. He believes similar techniques should be useful for measuring molecular motions between distinct regions of other samples, such as domains of liquid crystals or the interior and exterior of biological cells.

Yi-Qiao Song, of Schlumberger-Doll Research in Ridgefield, Connecticut, says the new work, including the other recent papers, is “very exciting.” He says the technique will allow petroleum researchers to go beyond mere structural measurements “to something that will probe new physics.”

–Don Monroe

Don Monroe is a freelance science writer in Murray Hill, New Jersey.


  1. P. J. McDonald et al., “Surface Relaxation and Chemical Exchange in Hydrating Cement Pastes: A Two-Dimensional NMR Relaxation Study,” Phys. Rev. E 72, 011409 (2005)
  2. J. H. Lee et al., “Two-Dimensional Inverse Laplace Transform NMR: Altered Relaxation Times Allow Detection of Exchange Correlation,” J. Am. Chem. Soc. 115, 7761 (1993)

More Information

Subject Areas

Interdisciplinary Physics

Related Articles

Focus: Imaging with Your Wi-Fi Hotspot
Interdisciplinary Physics

Focus: Imaging with Your Wi-Fi Hotspot

The Wi-Fi signals that provide internet access can also produce images of the transmitter’s 3D surroundings, even through walls. Read More »

Focus: 3D Images 10 Times Faster
Interdisciplinary Physics

Focus: 3D Images 10 Times Faster

3D x-ray phase-contrast images take as little as one-tenth the usual time to acquire using a technique that halves the number of required “photos.” Read More »

Synopsis: Flocks Without Memory
Biological Physics

Synopsis: Flocks Without Memory

Moving particles with no memory can group together in complex flock configurations using only instantaneous cues.   Read More »

More Articles