Synopsis: A Shield for Rydberg Atoms

The quantum properties of cold rubidium atoms on a chip can be protected by a thin metal layer on the chip’s surface.
Synopsis figure
M. Brune/Kastler-Brossel Laboratory

A Rydberg atom has its outermost electron in a highly excited orbit and, therefore, a large electric dipole moment—a property that could be used to transfer qubit states between elements in a quantum circuit. But a known problem with housing the atoms in practical circuit hardware such as a microchip is posed by electric fields, which quickly build up on the chip surface and interfere with the atoms’ quantum states. A potential cure for this problem has now been demonstrated by Michel Brune at the Kastler-Brossel Laboratory, France, and his colleagues. They show that coating chips with a thin metal layer increases the atoms’ coherence times by a factor of 100.

The group used a combination of lasers and magnetic trapping to position a cloud of rubidium atoms within a few hundred micrometers of a chip’s surface and cool the atoms to microkelvin temperatures. Normally, this process leaves stray rubidium atoms that stick to the surface and generate a fluctuating dipole field, limiting the coherence time of Rydberg qubits in the cloud to microseconds. But the authors found that a thin rubidium metal coating on the chip adsorbs the stray atoms and dampens the fluctuating field. On coated chips, superpositions between two Rydberg states on the same atom had coherence times of 600 microseconds.

Rydberg atoms could, in principle, interact with certain types of solid-state qubits and the optical field of a single photon—two systems that have complementary advantages for quantum circuits but are difficult to connect. The demonstrated scheme is a step towards making this connection in a practical circuit.

This research is reported in a Rapid Communication in Physical Review A.

–Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsQuantum Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: A Test of Gravity’s Quantum Side
Gravitation

Synopsis: A Test of Gravity’s Quantum Side

Two proposals describe how to test whether gravity is inherently quantum by measuring the entanglement between two masses. Read More »

Synopsis: Fermions Trapped in Boson Gas
Atomic and Molecular Physics

Synopsis: Fermions Trapped in Boson Gas

A Bose-Einstein condensate can act as a stable trap for a gas of fermions. Read More »

Synopsis: Atom Interferometers at Full Tilt
Atomic and Molecular Physics

Synopsis: Atom Interferometers at Full Tilt

An atom interferometer serves as a sensitive tiltmeter that can measure Earth’s tidal deformations. Read More »

More Articles