Synopsis: Quantum Vortex Twirls Like a Spinning Top

A special type of quantum vortex formed in a Bose-Einstein condensate precesses like a spinning top.
Synopsis figure
R. N. Bisset et al., Phys. Rev. A (2017)

Spin a top on a flat surface, and it will precess around a vertical axis while it spins rapidly around its own axis. Russell Bisset from the University of Trento, Italy, and colleagues now show—with experiments backed up by numerical simulations—that a particular type of quantum vortex can precess like a spinning top.

The vortex in question is a line in a cigar-shaped Bose-Einstein condensate around which the condensate’s wave function twists. This line pierces the condensate along one of its geometrical axes, like a sewing needle pierces a roll of fabric. Bisset and co-workers created such a vortex line in a condensate of about 20 million sodium atoms by using shock cooling, which cools the atoms more quickly than the cooling process that is usually used to create the condensate. Next, using a method that imaged the condensate every 12 ms but left it otherwise intact, the team tracked the position and orientation of the vortex line as it evolved in time. They found that the vortex line, which formed along one of the condensate’s short axes, revolved around the condensate’s long axis much like a spinning top precesses.

The team reproduced this precession behavior in numerical simulations of the system based on the Gross-Pitaevskii equation, which is commonly used to describe the dynamics of Bose-Einstein condensates. The findings provide novel tools to aid future experimental studies of vortex dynamics with minimally destructive imaging.

This research is published in Physical Review A.

­–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


More Features »


More Announcements »

Subject Areas

Quantum PhysicsAtomic and Molecular Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Experiment Backs Up Bogoliubov Theory

Read More »

Related Articles

Synopsis: ARPES with Cold Atoms
Atomic and Molecular Physics

Synopsis: ARPES with Cold Atoms

A numerical study outlines how to perform measurements on cold atoms that mimic angle-resolved photoemission spectroscopy studies of solids. Read More »

Viewpoint: Moiré Effect Could Enhance Neutron Interferometry

Viewpoint: Moiré Effect Could Enhance Neutron Interferometry

A new and more flexible neutron interferometer design relies on the moiré effect, in which two periodic patterns are combined to give a longer-period pattern. Read More »

Synopsis: Quantum Simulators Tackle Energy Transfer
Quantum Information

Synopsis: Quantum Simulators Tackle Energy Transfer

A quantum simulator made of two trapped-ion qubits can model quantum effects occurring during energy-transfer processes in molecules. Read More »

More Articles