Synopsis: A Faster Diamond Magnetometer

Diamond-defect magnetometers can now simultaneously determine all spatial components of a magnetic field, leading to a factor of 4 decrease in measurement times.
Synopsis figure
J. Schloss/MIT

The spin state of a diamond defect known as a nitrogen-vacancy (NV) center is highly sensitive to a magnetic field. As such, NV centers can be used as tiny magnetometers. However, sequential measurements are needed to detect each spatial component of a magnetic field, limiting the use of these devices. Now, Ronald Walsworth at Harvard University and colleagues have created an NV-center magnetometer that simultaneously measures all three spatial components of a magnetic field. The new device is 4 times faster than existing diamond-defect magnetometers and can measure fields that are 2 times smaller in strength.

Place an NV center in a magnetic field, and its electronic energy levels shift. This shift causes the center to emit a different number of photons when it is excited with a laser and a microwave signal. To map a 3D field, researchers need several NV centers, all oriented in different directions. But the only way to tell the centers apart is to interrogate each one separately.

Walsworth and colleagues found a way to distinguish the centers by imprinting the photon emission of each with a distinct “beat” pattern. They excited each center with a different frequency-modulated microwave signal, which caused the number of photons it emitted to fluctuate with the same modulated pattern. These patterns allowed them to distinguish the emission from each center and simultaneously measure the spatial components of a magnetic field.

Using their method, the team sampled a magnetic field every 40 𝜇s. This timescale is more than twice as fast as what’s needed to track magnetic-field fluctuations in cultures of neurons and heart cells, so the team says that their method could potentially be used for real-time monitoring of these systems.

This research is published in Physical Review Applied.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Magnetism

Previous Synopsis

Biological Physics

Knotted Loops Fall Flat

Read More »

Next Synopsis

Related Articles

Synopsis: Optical Vortices Can Probe Magnetism
Magnetism

Synopsis: Optical Vortices Can Probe Magnetism

A light “corkscrew” is sensitive to the local magnetic field direction, so it can be used to probe magnetism in a material. Read More »

Synopsis: Tuning an Atom’s Magnetic Field
Magnetism

Synopsis: Tuning an Atom’s Magnetic Field

Researchers modify the magnetic field of a single atom, demonstrating a potential way to store information in tiny devices of the future. Read More »

Synopsis: A New Quantum Spin Liquid Candidate
Magnetism

Synopsis: A New Quantum Spin Liquid Candidate

Neutron scattering experiments reveal signatures of an exotic phase of matter in the pyrochlore magnet Ce2Zr2O7. Read More »

More Articles