Synopsis: Sorting Carbon Nanotubes with Light

Laser light can be used to sort carbon nanotubes according to their chirality.
Synopsis figure
S. Spesyvtseva et al., Phys. Rev. Applied (2015)

Single-walled carbon nanotubes possess many industrially useful properties such as high thermal and electricity conductivity. These, and other properties, depend on the nanotubes’s chirality—the angle at which the two-dimensional lattice of carbon atoms “wraps” to form the nanotube. But batches of nanotubes are usually synthesized with a distribution of chiralities, while many nanotubes with the same chirality are needed for applications, like chemical and optical sensors. Now, researchers in Satoshi Kawata’s group at Osaka University in Japan have shown that a low-power laser can effectively sort nanotubes according to chirality. Their method is potentially less expensive and able to select for a wider range of chiralities than other approaches.

Kawata and his colleagues filled a glass microcapillary tube with solution containing suspended nanotubes with a spread of chiralities. The researchers then shone a tunable red laser into one end of the tube for several hours. When light from the laser was in resonance with a nanotube’s band-gap energy, it scattered more readily, imparting a force large enough to move the particle. Since band-gap energy is related to chirality, Kawata and his team were able to push nanotubes with a specific chirality toward the other end of the tube by tuning their laser to the appropriate wavelength. Kawata’s technique is inexpensive and relatively fast and only selects intact nanotubes, since damaged nanotubes don’t have the necessary optical resonances. Kawata and his team were, in some cases, able to double the relative concentration of nanotubes with a particular chirality. And they suggest that chiral purities of up to 100% could be achieved if they use two or more counterpropagating laser beams with different wavelengths to push different chiralities in opposite directions,

This research is published in Physical Review Applied.

–Katherine Kornei


Features

More Features »

Announcements

More Announcements »

Subject Areas

GrapheneIndustrial Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Rapid Alignment

Read More »

Related Articles

Synopsis: Beam Splitter is Printed On-Demand
Industrial Physics

Synopsis: Beam Splitter is Printed On-Demand

3D printing enables researchers to quickly fabricate a complex part for a molecular beam experiment. Read More »

Synopsis: Nonmetallic Tin Behaves Like 3D Graphene
Graphene

Synopsis: Nonmetallic Tin Behaves Like 3D Graphene

By applying strain to a form of tin, researchers make it behave like a 3D analog of graphene. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

More Articles