Synopsis: Metals are supercool

Structural changes in an alloy may lead to a clearer picture of glass transitions in liquid metals.

Some metals stay liquid below their melting temperature (i.e., they can be supercooled) and eventually form a glass when cooled further. While metals are crystalline in solid form, metallic glasses are amorphous. Glassy metals⎯particularly metallic alloys that form thick bulk metallic glasses (BMG)⎯remain an attractive subject of study decades after their discovery.

In an article in Physical Review B, Victor Wessels at the Washington University in St. Louis and his collaborators demonstrate the existence of a rapid ordering process in a supercooled metallic liquid. The group used high-energy x rays from the Advanced Photon Source at Argonne National Laboratory to study structural changes in levitated Cu-Zr alloys as they cool. A rapid chemical and topological ordering of the supercooled liquid begins just 75C below the melting temperature⎯a remarkable 465C above the BMG transition⎯suggesting that the atoms become more ordered well before they finally “slow down” to form a glass.

Cu-Zr alloys, forming BMGs under different conditions, are an ideal system in which to test the physics of glassy metals as they form, pointing us to a clearer understanding of structural ordering prior to the glass transition in liquid metals. – Athanasios Chantis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Static Electricity Needs Water
Materials Science

Synopsis: Static Electricity Needs Water

Experiments pressing two materials together show that static electricity accumulates when surface water lets ions move from one surface to another. Read More »

Viewpoint: Cooling with a Squeeze
Materials Science

Viewpoint: Cooling with a Squeeze

A newly designed alloy exhibits a “colossal” elastocaloric effect—a temperature change under strain—making it a good candidate for an environmentally friendly type of cooling. Read More »

Viewpoint: Polarons Get the Full Treatment
Materials Science

Viewpoint: Polarons Get the Full Treatment

A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. Read More »

More Articles