Synopsis: Metals are supercool

Structural changes in an alloy may lead to a clearer picture of glass transitions in liquid metals.

Some metals stay liquid below their melting temperature (i.e., they can be supercooled) and eventually form a glass when cooled further. While metals are crystalline in solid form, metallic glasses are amorphous. Glassy metals⎯particularly metallic alloys that form thick bulk metallic glasses (BMG)⎯remain an attractive subject of study decades after their discovery.

In an article in Physical Review B, Victor Wessels at the Washington University in St. Louis and his collaborators demonstrate the existence of a rapid ordering process in a supercooled metallic liquid. The group used high-energy x rays from the Advanced Photon Source at Argonne National Laboratory to study structural changes in levitated Cu-Zr alloys as they cool. A rapid chemical and topological ordering of the supercooled liquid begins just 75C below the melting temperature⎯a remarkable 465C above the BMG transition⎯suggesting that the atoms become more ordered well before they finally “slow down” to form a glass.

Cu-Zr alloys, forming BMGs under different conditions, are an ideal system in which to test the physics of glassy metals as they form, pointing us to a clearer understanding of structural ordering prior to the glass transition in liquid metals. – Athanasios Chantis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

More Articles