Synopsis: Doing a Crack Job on Aluminum

Atomic simulations of aluminum show how charge transfer from surface impurities can accelerate the growth of a crack tip.
Synopsis figure
R. J. Zamora et al., Phys. Rev. B (2012)

Engineers and materials scientists have long known that environmental factors can affect the fragility of manufactured components. Sometimes this is useful, as when a glassmaker applies a drop of water to a scribe mark to facilitate a clean break. More often, the chemical environment leads to reduced durability, as when aluminum under cyclic loading experiences a higher failure rate if the humidity increases. These effects are typically studied with a top-down approach: assemble lots of data on the way different materials respond to an environmental stress to arrive at a general mechanism. But a microscopic bottom-up approach is possible now with advanced computing tools, as Rick Zamora and colleagues at Cornell University, New York, report in Physical Review B.

The authors used the NASA Pleiades supercomputer to simulate the behavior of a crack in aluminum at an atomic level under different environmental conditions. These detailed multiscale calculations were run for three cases: a crack tip with no impurities, a crack tip with a single hydrogen atom, and a crack tip with a single oxygen atom. Zamora et al. ramped up the load on the simulated sample until a dislocation was created.

Results from these calculations predict that the hydrogen and oxygen impurities strenghen the aluminum bonds at the surface by means of charge transfer, inhibiting plasticity at the crack and raising the likelihood of brittle fracture. With this ab initio calculation, the Cornell team shows that a bottom-up approach can be a valuable tool for understanding embrittlement due to environmental causes. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials SciencePhysical Chemistry

Previous Synopsis

Quantum Information

Quantum Computers Have a Fit

Read More »

Next Synopsis

Particles and Fields

Narrowing the Range of Possibilities

Read More »

Related Articles

Synopsis: Tackling Electronic Correlations
Condensed Matter Physics

Synopsis: Tackling Electronic Correlations

A new “first principles” simulation method could broaden the range of strongly correlated materials whose properties can be theoretically predicted. Read More »

Viewpoint: Hydrogen Hides Surprises at High Pressure
Condensed Matter Physics

Viewpoint: Hydrogen Hides Surprises at High Pressure

Measurements of the melting curve of hydrogen at unprecedentedly high pressures call for a refinement of the theories describing the material. Read More »

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains
Materials Science

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains

Simulations of porous materials exhibit internal stress patterns like those in granular materials, despite the fact that these two systems are practically “negative images” of each other. Read More »

More Articles