Synopsis: Proton Longevity Pushes New Bounds

A long-running experiment in Japan has released a new lower limit on the proton lifetime, which begins to constrain certain particle physics theories.
Synopsis figure
Kamioka Observatory, ICRR, The University of Tokyo

Protons live a long time but perhaps not forever. Several theories predict that protons can decay, and a handful of experiments have tried to detect such an event. The Super-Kamiokande experiment in Japan has the longest track record in the search for proton decay, and its researchers have now published a new lower bound on the proton lifetime that is 2.5 times greater than their previous bound. The proton’s observed stability places constraints on certain extensions of the standard model of particle physics.

Proton decay is an expected outcome of most grand unified theories, or GUTs, which meld together the three main particle forces—strong, weak, and electromagnetism—at high energy. A certain class of GUTs, for example, predicts that a proton should decay into a positron and π meson with a lifetime of about 1031 years, which means roughly 1 decay per year in a sample of 1031 protons. Experiments have already ruled this possibility out.

Other GUTs that incorporate supersymmetry (SUSY), a hypothetical model that assumes all particles have a partner with different spin, predict that the proton decays into a K meson and a neutrino with a lifetime of less than a few times 1034 years. The Super-Kamiokande collaboration has looked for signs of this decay in a 50,000-ton tank of water surrounded by detectors. If one of the many protons in the tank were to decay, the K meson’s decay products (muons, π mesons) would be detectable. The researchers simulated such proton decay events but found no matches in data spanning 17 years. From this, they conclude that the proton lifetime for this SUSY-inspired decay pathway is greater than 5.9×1033 years.

This research is published in Physical Review D.

–Michael Schirber


More Features »


More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Fluid Dynamics

Optimizing Crop Irrigation

Read More »

Related Articles

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

Synopsis: A Precise Probe of the Quark-Gluon Plasma
Particles and Fields

Synopsis: A Precise Probe of the Quark-Gluon Plasma

Properties of the quark-gluon plasma can be inferred from measurements of jets and Z bosons simultaneously produced in the ion collisions that create the plasma. Read More »

Synopsis: Filling in a Tetraquark’s Profile
Particles and Fields

Synopsis: Filling in a Tetraquark’s Profile

An analysis of electron-positron collision data has determined the spin and parity of a particle thought to consist of four quarks. Read More »

More Articles