Synopsis: All together now

Spontaneous synchronization between an array of mechanical oscillators gives rise to an acoustic analog to the laser.

The steps of pedestrians walking on bridges, the firing of neurons in the brain, and the phases of photons emitted by atoms in a laser are all examples where spontaneous synchronization of an ensemble of oscillators occurs in the absence of an external clock. In these systems, a mean field, generated by the single oscillators and felt by all of them, drives the oscillators to move in lock-step.

The underlying mechanism for spontaneous synchronization has been understood and summarized by the so-called Kuramoto model, which is based on the assumption that the phase of each oscillator is attracted by the average phase of all the others. Now, a paper appearing in Physical Review E from David Mertens and Richard Weaver at the University of Illinois in Urbana-Champaign offers evidence that the same formalism can describe an acoustic analog to the laser.

The authors model an experimental system (described in a separate publication) where feedback forms between simple, eccentrically weighted dc motors, such as those found in cell phones, and an underlying resonant cantilever. The speed of the motors determines the frequency with which the cantilever oscillates, while the support vibration induces an effective torque to the motors and affects their speed.

By generalizing the Kuramoto model to resonant coupling, Mertens and Weaver are able to account for several aspects of the motor oscillators that could in turn be useful for describing a broad class of oscillator ensembles spanning disciplines from laser physics to mechanical engineering to neuroscience. – Antonio Politi


More Features »


More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Soft Matter

It’s a wrap

Read More »

Next Synopsis

Particles and Fields

A “bump” in the data

Read More »

Related Articles

Focus: 3D Images 10 Times Faster
Interdisciplinary Physics

Focus: 3D Images 10 Times Faster

3D x-ray phase-contrast images take as little as one-tenth the usual time to acquire using a technique that halves the number of required “photos.” Read More »

Synopsis: Flocks Without Memory
Biological Physics

Synopsis: Flocks Without Memory

Moving particles with no memory can group together in complex flock configurations using only instantaneous cues.   Read More »

Synopsis: Ribbon Creases and Twists

Synopsis: Ribbon Creases and Twists

Experiments with paper ribbons show how one can predict the final shape of a loop when the ribbon’s ends are pulled tight. Read More »

More Articles