Synopsis: Playing pool with atoms

When an atom is bombarded with just enough energy to fully ionize it, how do the electrons and nucleus break apart from each other? Experimentalists are now able to study such a four-body breakup by bombarding a helium atom with an electron.
Synopsis figure

One of the most basic ways to learn about few-body interactions in an atom is to break it apart. Understanding this atomic fragmentation is most challenging when the particles emerge with little kinetic energy. Since perturbation theory cannot be used, all of the particles need to be treated on an equal footing, and the behavior of the system at long times and large distances becomes crucial.

For interactions that fall off as 1/r2 or slower—such as that between charged particles—large-distance correlations subtly influence the breakup, but exactly how this occurs has been a subject of controversy for more than 50 years. Writing in Physical Review Letters, Xueguang Ren, Alexander Dorn, and Joachim Ullrich of the Max Planck Institute for Nuclear Physics in Heidelberg use electron bombardment to fully ionize helium at an excess energy of only 5 eV. They find the electrons—two from the helium atom plus the projectile electron—emerge predominantly in the configuration of an equilateral triangle, in accordance with the basic prediction of so-called Wannier-type threshold laws. But they also show that on a more detailed level some unexpected structure persists, indicating that the fragmentation dynamics at these energies is more subtle than the simple Wannier picture would suggest.

The paper is an important step forward in the understanding of threshold fragmentation, but it also raises new questions by showing unexpected complexity in the details of the atomic breakup. – Thomas Pattard


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Biological Physics

A little vaccine goes a long way

Read More »

Related Articles

Viewpoint: A Diatomic Molecule is One Atom too Few
Atomic and Molecular Physics

Viewpoint: A Diatomic Molecule is One Atom too Few

The successful laser cooling of a triatomic molecule paves the way towards the study of ultracold polyatomic molecules. Read More »

Viewpoint: Atom Interferometers Warm Up
Atomic and Molecular Physics

Viewpoint: Atom Interferometers Warm Up

Researchers have demonstrated an atom interferometer based on a warm vapor, rather than on a cold atomic gas. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles