Synopsis: Zooming out on complex networks

How the structural organization of a network evolves as it is observed on larger and larger scales remains an open question. Now, a general and systematic approach to answer this question may be in sight.
Synopsis figure

Complex networks appear in extremely diverse contexts, such as telecommunications, protein interactions, and social interactions. Yet many of these networks appear to share certain nontrivial, similar patterns of connection between their elements. Understanding the origins of these patterns and identifying and characterizing new ones is one of the main driving forces for research in complex networks. An interesting and open question pertinent to this effort is how the structural organization of a network evolves as it is observed on increasingly larger scales—from individual nodes to the network as a whole.

Building on several contributions to this problem [1,2], Filippo Radicchi, José Ramasco, and Santo Fortunato at the ISI Foundation in Torino and Alain Barrat at Université Paris-Sud take another significant step forward in a paper appearing in Physical Review Letters. Drawing from statistical mechanics, they use well-established real-space renormalization and finite-size scaling techniques and formulate a systematic approach that analyzes the evolution (or “flow”) of two judiciously chosen variables that characterize the structure of the network as they increase the scale of observation. They apply this approach to a number of artificial networks (or graphs), some of which are models of real networks, and find universal behavior that has not been identified before.

Will this approach lead to a full classification of complex networks into universality classes? That remains to be seen. But the work from Radicci et al. already complements the existing characterization of topology of complex networks. – Ling Miao

[1] C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 (2005); Nature Phys. 2, 275 (2006).

[2] K.-I. Goh, G. Salvi, B. Kahng, and D. Kim, Phys. Rev. Lett. 96, 018701 (2006).


Features

More Features »

Announcements

More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Optics

Soliton starter

Read More »

Next Synopsis

Related Articles

Viewpoint: Acoustic Experiments without Borders
Interdisciplinary Physics

Viewpoint: Acoustic Experiments without Borders

A new approach to laboratory acoustic experiments could remove unwanted effects caused by the reflections of acoustic waves from the boundaries of the experimental setup. Read More »

Synopsis: The Geometry of Arctic Ponds
Geophysics

Synopsis: The Geometry of Arctic Ponds

A geometric model of meltwater ponds may help predict how the polar ice caps might evolve under future climate changes. Read More »

Synopsis: Financial Brownian Motion
Complex Systems

Synopsis: Financial Brownian Motion

Using data on the activity of individual financial traders, researchers have devised a microscopic financial model that can explain macroscopic market trends. Read More »

More Articles