Synopsis: An ultracold plasma shows its unstable side

The same instability that is observed in hot plasmas, such as those created in spacecraft ion thrusters, is also found in an ultracold xenon plasma.
Synopsis figure

Although plasmas are usually associated with high temperatures, in 1999 a group of researchers at the National Institute of Standards and Technology in Maryland successfully created an ultracold plasma by cooling xenon atoms in a magneto-optical trap and then photoionizing them just above threshold [1]. The resulting ultracold plasma had electron and ion temperatures of only 100 mK and 10μK, respectively.

Due to their nonlinear and collective nature, plasmas typically exhibit a large variety of instabilities, as anyone working in the field of magnetic-confinement fusion is fully aware. Because of their extremely low temperature, ultracold plasmas are expected to behave significantly differently from “hot” plasmas [2], but a paper appearing in Physical Review Letters presents the first evidence that ultracold plasmas also exhibit instabilities.

In their experiment, Steven Rolston (one of the authors of [1]), Xian Li Zhang, and Robert Fletcher, all at the University of Maryland, form an ultracold plasma from xenon atoms that then expands more or less uniformly as the hotter electrons leak out of the potential well caused by the ions. This uniform-expansion picture changes when they apply a small transverse magnetic field. In this case, the authors observe large, periodic pulsed emissions of electrons. Although the exact mechanism causing these pulsed emissions is unknown, the group believes they are the signature of an instability caused by the electrons drifting relative to the ions across the applied magnetic field. Similar electron drift instabilities have previously been seen in the hot plasmas in Hall thrusters, which are plasma-based ion-propulsion systems for spacecraft. – Jerome Malenfant

[1] T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, Phys. Rev. Lett. 83, 4776 (1999).

[2] Steven Rolston, Physics 1, 2 (2008).


More Features »


More Announcements »

Subject Areas

Plasma Physics

Previous Synopsis


Spinning on a gold atom

Read More »

Next Synopsis


A superfluid of excitons

Read More »

Related Articles

Viewpoint: Free-Electron Laser Does the Twist
Plasma Physics

Viewpoint: Free-Electron Laser Does the Twist

Researchers have used a free-electron laser to produce vortex radiation at extreme-ultraviolet wavelengths. Read More »

Synopsis: Neutrons On-Demand from Laser Fusion
Nuclear Physics

Synopsis: Neutrons On-Demand from Laser Fusion

A new laser-driven fusion method could lead to a robust and efficient way to generate neutrons for use in materials science, geology, and other fields. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles