Synopsis: Nucleon attractions

High-precision mass measurements of an isotope of mercury will help us to understand the forces between nucleons in nuclei.
Synopsis figure
Illustration: Alan Stonebraker

Comparing the masses of nuclei that differ by a few neutrons or protons can yield empirical values for the interaction strengths between the valence nucleons. By measuring the strength of these interactions, we can better extrapolate the structure of heavier, less stable nuclei to help answer such questions as “Do superheavy nuclei exist?” or “How are heavy elements created?”

One of the most useful nuclear regions in which to carry out these comparisons is around the doubly magic nucleus 208Pb, which has a well-understood shell structure. Unfortunately, the mass of 208Hg, which contains two fewer protons than 208Pb, has not been known to sufficient precision to make meaningful comparisons. A beautiful experiment appearing in Physical Review Letters has now filled in this missing piece. Using the unique capabilities available at the GSI near Darmstadt, Germany, an international team of scientists captured nuclear fragmentation products, including 208Hg, from a high-energy beam of 238U into the Experimental Storage Ring (ESR). Sensitive detectors around the ring measured the circulation frequencies of the different species, which depend on the particle masses.

When combined with previous mass measurements, the new 208Hg mass measurement allows for the first time an empirical determination of the average proton-neutron interaction for neutron orbits above the closed shell at N=126. The interaction strength decreases dramatically beyond the closed shell, confirming that it depends strongly on the spatial overlap of the valence orbits. These new results will help to refine predictions for nuclei far from stability. – Gene D. Sprouse


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Next Synopsis

Mesoscopics

Fragile state

Read More »

Related Articles

Viewpoint: Watching the Hoyle State Fall Apart
Nuclear Physics

Viewpoint: Watching the Hoyle State Fall Apart

Two experiments provide the most precise picture to date of how an excited state of carbon decays into three helium nuclei. Read More »

Synopsis: Strong Force Calculations for Weak Force Reactions
Nuclear Physics

Synopsis: Strong Force Calculations for Weak Force Reactions

Theorists have used lattice-QCD calculations to predict two weak-force-driven reactions—proton fusion and tritium decay. Read More »

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

More Articles