Synopsis: Universality of the glass transition

Temperature and pressure appear to play a more dovetailed role in the glass transition than previously recognized.
Synopsis figure
Illustration: Kawasaki et al., Phys. Rev. Lett. 99, 215701 (2007)

A molecular liquid cooled to below its freezing point (i.e., supercooled) can become a glass. A colloidal fluid, a collection of suspended particles undergoing Brownian motion, can form a colloidal glass under increasing pressure.

Though both scenarios are examples of the so-called glass transition, researchers have disagreed on whether the two phenomena are related, that is, on whether temperature or pressure plays a more important role in the formation of a glass. Ning Xu at the Chinese University of Hong Kong, Thomas Haxton and Andrea Liu at the University of Pennsylvania, and Sidney Nagel at the University of Chicago, both in the US, explain in a paper published in Physical Review Letters that there is a limit in which the relaxation behavior near the glass transition can be understood without separately invoking temperature T and pressure p; the data collapses on a curve determined by their ratio T/p. This equivalence indicates that there is indeed a hitherto overlooked universal aspect to glass transition. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Statistical Physics

Gravity organizes sediment

Read More »

Next Synopsis

Quantum Information

When the quantum dog doesn’t bark

Read More »

Related Articles

Synopsis: Sorting Blood Cells via Their Stiffness
Biological Physics

Synopsis: Sorting Blood Cells via Their Stiffness

A proposed modification to a microfluidic cell-sorting device could separate cells by their deformability, an important marker for several diseases. Read More »

Synopsis: Antispiral Formation at a Liquid Surface
Fluid Dynamics

Synopsis: Antispiral Formation at a Liquid Surface

Liquid falling from a horizontal film displays an intriguing pattern of inwardly rotating spirals. Read More »

Synopsis: Turning Round Drops Square
Soft Matter

Synopsis: Turning Round Drops Square

Researchers can change the shape of a liquid drop by placing it between two stretched elastic films, allowing the drop to be used as a tiny adjustable lens. Read More »

More Articles