Synopsis: Air showers from ultrahigh-energy cosmic rays

Cascades created by cosmic rays interacting with the atmosphere provide clues about the mass composition of ultrahigh-energy cosmic rays.
Synopsis figure
Illustration: Courtesy of the Pierre Auger Observatory

The nature and origin of ultrahigh-energy (>1018eV) cosmic rays remain a mystery. Astrophysicists hunt for clues regarding their mass composition, which, along with other properties such as the flux and arrival direction distribution, should help distinguish among the various models of the sources and propagation of cosmic rays. However, because of the low flux of ultrahigh-energy cosmic rays, the mass composition cannot be measured directly. Instead, it is inferred from measurements of the extensive air showers—the cascades of high-energy ions created when incident cosmic rays collide with atoms in the atmosphere. The atmospheric depth at which development of a shower reaches its maximum number of secondary particles depends on the mass and energy of the incident particle. Data on the depth of the maximum thus provide information about the mass composition.

The Pierre Auger Collaboration has presented in Physical Review Letters new measurements of extensive air showers from ultrahigh-energy cosmic rays. Their observations suggest a gradual increase in the average mass of cosmic rays in a region of energies around 1019eV. The data are the highest statistics measurements to date. – Stanley Brown


More Features »


More Announcements »

Subject Areas

Particles and FieldsAstrophysics

Previous Synopsis

Atomic and Molecular Physics

Better timing with aluminum ions

Read More »

Next Synopsis


Keep it local

Read More »

Related Articles

Viewpoint: Spinning Black Holes May Grow Hair

Viewpoint: Spinning Black Holes May Grow Hair

A spinning black hole may lose up to 9% of its mass by spontaneously growing “hair” in the form of excitations of a hypothetical particle field with a tiny mass. Read More »

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

Synopsis: A Reionization Filter for the Cosmic Microwave Background

Synopsis: A Reionization Filter for the Cosmic Microwave Background

A new method of analyzing cosmic microwave background data could isolate signatures from the so-called reionization period that occurred a few hundred million years after the big bang. Read More »

More Articles