Synopsis

Hot currents in benzene

Physics 3, s37
Simulations reveal how laser-excited persistent currents in ring-shaped aromatic molecules couple to vibrational modes.

Laser pulses of circularly polarized light can drive π electrons around the ring of an aromatic molecule. For example, photoexcited π-electron currents flow around a benzene ring formed by the hexagonal carbon-atom structure. Theoretical studies of such systems are promising, but they are limited to zero-temperature applications because they assume rigid molecules at rest.

Writing in Physical Review Letters, Manabu Kanno, Hirohiko Kono, and Yuichi Fujimura at Tokohu University, Japan, and Sheng H. Lin at Academia Sinica in Taiwan report a simulation of the interaction between photoexcited ring currents and vibrational atomic modes in an aromatic molecule ( 2,5-dichloropyrazine), which has characteristics of a chiral molecule. For such a molecule, currents can be created by linearly polarized light. Atoms in the molecule are found to vibrate with amplitudes that are sensitive to the direction of flow of the ring currents. This directional coupling allows the authors to propose detecting the switching behavior of π-electron currents by monitoring the vibrational modes of the molecule.

Thermal fluctuations are not included in the simulations, but the coupling to vibrational modes suggests that photoexcited currents might be stable enough for high-temperature applications. The optical control of currents at accessible temperatures could open the door to a host of future molecular devices. Similar to supercurrents that flow in superconducting quantum interference devices (SQUIDs), molecular ring currents could be used in molecular detectors of localized magnetic flux at high temperatures. – Saad Hebboul

Correction (23 March 2010): Paragraph 2, sentences 1 and 2, ”…vibrational atomic modes in a chiral aromatic molecule ( 2,5-dichloropyrazine). For a chiral aromatic molecule…” changed to ”…vibrational atomic modes in an aromatic molecule ( 2,5-dichloropyrazine), which has characteristics of a chiral molecule. For such a molecule…”


Subject Areas

OpticsChemical Physics

Related Articles

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

Probing the Rotational Doppler Effect with a Single Ion
Atomic and Molecular Physics

Probing the Rotational Doppler Effect with a Single Ion

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion. Read More »

Cleaning Intense Laser Pulses with Plasma
Optics

Cleaning Intense Laser Pulses with Plasma

When two laser beams converge on a volume of gas, their interference creates a diffraction grating made of plasma that can divert and shape a third beam. Read More »

More Articles