Synopsis: Isotropy can’t be swept under a carpet cloak

The caveat that a carpet cloak must be made of an anisotropic material should not be ignored.
Synopsis figure
Illustration: B. Zhang et al., Phys. Rev. Lett. (2010)

Invisibility cloaks—optical materials that hide objects by distorting the path of light or altering its scattering pattern—have captured the imagination of scientists and the public alike. Unfortunately, an obstacle to manufacturing cloaks is the need to make them from anisotropic materials, which are difficult to engineer at optical frequencies.

In 2008, Li and Pendry [1] proposed the idea of a “carpet cloak,” whereby the hidden object lies under a smooth bump that appears flat to the observer. In principle, the carpet cloak must also be made of an anisotropic material, but Li and Pendry showed that even side-stepping this requirement, one can obtain cloaking, albeit as an approximation to the exact problem.

But could the isotropic approximation introduce image distortions large enough to give away the cloaking effect? Writing in Physical Review Letters, Baile Zhang, Tucker Chan, and Bae-Ian Wu at the Massachusetts Institute of Technology in the US trace a light ray reflected from an isotropic carpet cloak. They find an isotropic cloak preserves the phase but not the direction of the scattered light. Instead, the ray is shifted laterally—in some cases by an amount comparable to the object itself—leaving a telltale signal that what appears as empty space may be the presence of an object.

Zhang et al.’s efforts to outline the fundamental and practical limitations of using isotropic media instead of anisotropic ones should inform the search for broadband, optical cloaks, as well as a wide range of devices and applications in transformation optics. – Manolis Antonoyiannakis

[1] J. Li and J. B. Pendry, Phys. Rev. Lett. 101, 203901 (2008).


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsMetamaterials

Next Synopsis

Atomic and Molecular Physics

Raman thermometer for fermions

Read More »

Related Articles

Synopsis: A Sextet of Entangled Laser Modes
Atomic and Molecular Physics

Synopsis: A Sextet of Entangled Laser Modes

Researchers have entangled six modes of a laser cavity—a record number for such a device. Read More »

Synopsis: Counting Photons from a Polariton Condensate
Optics

Synopsis: Counting Photons from a Polariton Condensate

By counting the photons emitted from a microcavity, researchers shed light on the nature of an exotic condensate of quasiparticles contained in the cavity.     Read More »

Synopsis: A Fresh Slice of Electrons Feeds Enhanced X Rays
Optics

Synopsis: A Fresh Slice of Electrons Feeds Enhanced X Rays

A new free-electron-laser configuration emits soft x-ray pulses with record-breaking energies. Read More »

More Articles