Synopsis: A double whammy of x rays

Scientists have for the first time observed two-photon absorption with x rays.
Synopsis figure
Credit: G. Doumy et al., Phys. Rev. Lett. (2011)

Photons can pair up to ionize an atom when individually they’re not energetic enough to do the job. However, this requires an intense light source so that the atom can absorb two photons in rapid succession. Using the world’s most powerful x-ray laser, scientists have for the first time observed two-photon absorption in the x ray part of the spectrum. In the experiment, which is presented in Physical Review Letters, x rays from the Linac Coherent Light Source (LCLS) stripped the innermost electrons of a neon atom at a rate over 100 times higher than predicted by theoretical models.

For fifty years now, physicists have been exploring two-photon absorption at energies corresponding to infrared, visible, and ultraviolet wavelengths. The technique has been used to study electronic properties of atoms and molecules, to image human tissues, and to improve the resolution for photolithography. Despite scientific interest in expanding this nonlinear optical effect to higher energies, x-ray sources with adequate intensity have been lacking until now.

Completed in 2009, the LCLS at the SLAC National Accelerator Laboratory produces ultrashort pulses of 10 trillion x-ray photons. In their experiments, Gilles Doumy, of The Ohio State University, and his colleagues placed a neon target in the beam path and tuned the energy of the x rays to just above and just below the energy threshold (1196eV) for ionizing electrons in the 1s shell of neon. By analyzing the ions that emerged from the target, the team found evidence of two-photon absorption. The authors expect their results will be an important step towards probing the interiors of solid samples with x rays. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Astrophysics

Hyperon stars

Read More »

Next Synopsis

Superconductivity

Magnetism shortly before pairing

Read More »

Related Articles

Focus: <i>Video</i>—Juggling Droplets
Optics

Focus: Video—Juggling Droplets

A pair of microscopic liquid droplets suspended by a laser beam can execute a surprisingly stable “juggling” pattern for up to 30 minutes. Read More »

Focus: How to Study a Speck of Dust
Optics

Focus: How to Study a Speck of Dust

A new technique allows the capture and study of a single dust particle just 34 nanometers wide, nearly 10 times smaller than the previous limit. Read More »

Synopsis: Controlling Light with Trembling Nanoparticles
Optics

Synopsis: Controlling Light with Trembling Nanoparticles

The scattering of light from vibrating particles could be harnessed to build directional devices such as optical diodes. Read More »

More Articles