Synopsis: Cathedral’s invisible earthquake damage

Properties of vibrations in a pillar in a 1400-year-old Sicilian cathedral correlate with those of very small, nearby earthquakes, suggesting new ways of monitoring the gradual damage that such quakes can inflict on old buildings.

Researchers in Italy are concerned that the 7th century Cathedral of Syracuse in Sicily may be gradually losing structural integrity because of many small, nearby earthquakes. To assess its current state and the relationship with earthquakes, Gianni Niccolini of the National Institute of Metrological Research in Turin and his colleagues monitored so-called acoustic emissions—high-frequency vibrations that are emitted sporadically as tiny cracks develop inside materials such as stone or concrete.

The team wired up a single pillar for four months and then compared the data with earthquake records. As they report in their paper in Physical Review Letters, they found that the distribution of times between events—whether earthquakes or acoustic emissions—fell onto the same curve, over a wide range of timescales and energies, when scaled appropriately. A similar “universal scaling law” has been shown for collections of earthquakes of a range of sizes in different regions, so the new results appear to extend the law to the much smaller energy scales of a single pillar. The correlation suggests that similar mechanisms may underlie both earthquakes and small fractures in the pillar, according to the authors, and that more careful monitoring of the cathedral is warranted. – David Ehrenstein


Features

More Features »

Announcements

More Announcements »

Subject Areas

Interdisciplinary PhysicsMaterials Science

Previous Synopsis

Biological Physics

A tale of two nucleic acids

Read More »

Next Synopsis

Related Articles

Focus: Astronomy Students Not Learning the Basics
Interdisciplinary Physics

Focus: Astronomy Students Not Learning the Basics

Nearly half of middle school students in a Norwegian study thought that planets are bigger than stars, even after astronomy instruction. Read More »

Viewpoint: Constructing a Theory for Amorphous Solids
Materials Science

Viewpoint: Constructing a Theory for Amorphous Solids

Theorists are coming closer to a comprehensive description of the mechanics of solids with an amorphous structure, such as glass, cement, and compacted sand. Read More »

Viewpoint: Shaping Electron Bunches at the Femtosecond Level
Optics

Viewpoint: Shaping Electron Bunches at the Femtosecond Level

By crossing an electron beam with a terahertz light pulse, researchers are able to generate a tilted electron bunch, which could provide improved temporal resolution to electron microscopy. Read More »

More Articles