Synopsis: A light beam passes through it

Experiments confirm a decades-old prediction that carefully tailoring the shape of a barrier lets light of many colors pass through it without reflection.
Synopsis figure
A. Szameit et al., Phys. Rev. Lett. (2011)

Abrupt interfaces disrupt wave propagation. For example, light passing from air into a sheet of glass will partially reflect backwards. When the light exits back into air, there is a second reflection that can cancel the first for light of just the right frequency, given the refractive index and thickness of the sheet. The wave nature of electrons creates similar effects when they encounter a region with a changing electrostatic potential. But early in the history of quantum mechanics, theorists realized that certain smoothly varying potential profiles could eliminate the reflection of electrons over a wide range of frequencies.

As it turns out, the same concepts work for light: intense light pulses known as solitons create precisely this kind of profile in the refractive index of the surrounding medium, eventually becoming trapped. Creating permanent versions of such “reflectionless potentials” has, however, proved difficult. In Physical Review Letters, Alexander Szameit of the Technion in Haifa, Israel, and colleagues in Germany and Australia at last implement the lack of light reflection in the laboratory.

In their experiments, a beam of light travels along an array of closely spaced, parallel waveguides created in a glass sample through direct laser-writing. By changing the spacing between some of the waveguides, the researchers construct a stripe along the length of the array that has a different refractive index modulation relative to the rest of the array. For almost any change in spacing, light traveling diagonally across the stripe is partially reflected, as usual. But a stripe having the special variation suggested by theory generates almost no reflection. The technique adds to the bag of tricks that researchers have for manipulating light. – Don Monroe


More Features »


More Announcements »

Subject Areas


Previous Synopsis


Carbon flowers

Read More »

Next Synopsis

Quantum Information

Photosynthesis disentangled?

Read More »

Related Articles

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

Focus: <i>Image</i>—Honeycomb Diffraction

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

More Articles