Synopsis: New place to search for Efimov states

Three-body bound states, known to form among spherically symmetric atoms, should also exist for dipole molecules.
Synopsis figure
Credit: Y. Wang, Phys. Rev. Lett. (2011)

Tractable three-body problems are rare, which is why Vitaly Efimov’s study in 1970 proposing that bound states could exist between three interacting bosons was so intriguing. It took more than 30 years, though, to observe Efimov states in an ultracold gas of cesium atoms, in which interactions could be controlled with a magnetic field. Now, writing in Physical Review Letters, theorists suggest similar states should also exist between dipolar molecules.

In his prediction, Efimov assumed the interacting bosons were spherically symmetric. In their new work, Yujun Wang and colleagues at JILA, at the University of Colorado, Boulder, use numerical methods to look for bound states between molecules that have an electric dipole—an extended structure that greatly complicates the calculations. The group shows that such dipolar Efimov states are in fact long-lived and “universal,” meaning they don’t depend on the molecules’ detailed structure. (The states only exist when the separation between the molecules is large compared with the length of their dipole moment.)

Wang et al.’s prediction is timely, as it is only in the last two to three years that experimentalists have been able to cool the molecules in a gas to their absolute ground state and study and manipulate the dipole interactions between them. – Jessica Thomas


Features

More Features »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Biological Physics

Twist or twirl

Read More »

Next Synopsis

Superconductivity

Nesting questions

Read More »

Related Articles

Synopsis: Entangling Atoms by Sculpting their Wave Functions
Quantum Physics

Synopsis: Entangling Atoms by Sculpting their Wave Functions

Two atoms in a cavity are entangled by carving off unwanted parts of the wave functions that describe them. Read More »

Synopsis: A Dark Side for Qubits
Quantum Information

Synopsis: A Dark Side for Qubits

Dark solitons in a Bose-Einstein condensate could, according to calculations, function as qubits with long lifetimes. Read More »

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave
Gravitation

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave

The effect of the tidal force, which is directly related to the curvature of spacetime, on an individual particle’s wave function has been measured with an atom interferometer. Read More »

More Articles