Synopsis: Keep Oxygen Out

Hydrogen storage on carbon materials is strongly affected by the presence of oxygen.
Synopsis figure
A. Sigal et al., Phys. Rev. Lett. (2011)

Hydrogen is a promising source of renewable energy for transportation, but a key challenge is to find a lightweight material to store and extract hydrogen efficiently. Carbon-based compounds such as nanotubes and graphene decorated with metallic atoms have been proposed as storage candidates. First-principles calculations show that these materials, which have a large surface area, favor hydrogen adsorption. However, experiments have not yet found a suitable material that delivers on all the criteria required for applications.

Writing in Physical Review Letters, Agustin Sigal and colleagues from the National University of Córdoba, Argentina, have used density functional theory to calculate the adsorption energy of hydrogen and oxygen on graphene decorated with a variety of metals. Sigal et al. find that oxygen interferes with hydrogen adsorption by blocking the sites where it could take place and by irreversibly oxidizing the metallic sites. Energetically, they find that the most favorable metallic decorations on graphene are those made of nickel, palladium, and platinum. Even in the most promising cases, it is found that oxygen partial pressure must be reduced to an ultrahigh-vacuum level in order to allow efficient hydrogen storage. These findings identify oxygen interference as a major obstacle to storing hydrogen on a carbon scaffold. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

GrapheneMaterials Science

Previous Synopsis

Next Synopsis

Statistical Physics

Touching Gases Settle Down

Read More »

Related Articles

Synopsis: Additional Peaks in Graphene’s Band Structure
Graphene

Synopsis: Additional Peaks in Graphene’s Band Structure

Researchers observe new features in the band structure of multilayer graphene that point to enhanced electron interactions. Read More »

Synopsis: Programmable Material Inspired by Muscle
Materials Science

Synopsis: Programmable Material Inspired by Muscle

A specially designed modular material can adopt many force-generating and energy-storing postures, which could be useful for soft robotics. Read More »

Synopsis: Reversible Self-Assembly of Macroscopic “Polymers”
Soft Matter

Synopsis: Reversible Self-Assembly of Macroscopic “Polymers”

Reconfigurable materials step closer to reality with a colloidal system that self-assembles, disassembles, and reassembles into polymer-like chains in response to temperature changes. Read More »

More Articles